

Project Code	NS2 IEEE PAPERS-2016 PROJECT TITLES WITH ABSTRACT
	WIRELESS SENSOR NETWORKS
NXT01NS2	TITLE: Analysis of PKF: A Communication Cost Reduction Scheme for Wireless
	Sensor Networks.
	ABSTRACT: Energy efficiency is a primary concern for wireless sensor networks
	(WSNs). One of its most energy-intensive processes is the radio
	communication. This work uses a predictor combined with a Kalman filter (KF)
	to reduce the communication energy cost for cluster-based WSNs. The
	technique, called PKF, is suitable for typical WSN applications with adjustable
	data quality and tens of picojoule computation cost. However, it is challenging
	to precisely quantify its underlying process from a mathematical point of view.
	Through an in-depth mathematical analysis, we formulate the tradeoff
	between energy efficiency and reconstruction quality of PKF. One of our
	prominent results for that is the explicit expression for the covariance of the
	doubly truncated multivariate normal distribution; it improves the previous
	methods and has generality. The validity and accuracy of the analysis are
	verified with both artificial and real signals. The simulation results, using real
	temperature values, demonstrate the efficiency of PKF: without additional data
	degradation, it reduces the communication cost by more than 88%. Compared
	to previous works based on KF, PKF requires less computational effort while
	improving the reconstruction quality; compared with the techniques without
	KF, the advantages of PKF are even more significant. It reduces the
	transmission rate of them by at least 29%. Besides, it can be integrated into
	network level techniques to further extend the whole network lifetime.

NXT02NS2	TITLE: Online Packet Dispatching for Delay Optimal Concurrent Transmissions
	in Heterogeneous Multi-RAT Networks
	ABSTRACT: In this paper, we consider the problem of concurrent transmissions
	in a wireless network consisting of multiple radio access technologies (multi-
	RATs). That is, a single flow of packets is dispatched over multiple RATs so that
	the complementary advantages of different RATs can be exploited. One of the
	challenging issues arising in concurrent transmissions is the packet outof- order
	problem due to diverse wireless channel states and scheduling policies of
	different RATs, leading to substantial performance degradation to delay
	sensitive applications. To address this problem, we firstly propose a state-
	independent packet dispatching (SIPD) policy, which attempts to find the traffic
	dispatching ratios over multiple RATs to minimize the maximum average delay
	across different RATs in the long run. We further propose a state-dependent
	packet dispatching (SDPD) policy, which achieves fine-grained packet
	dispatching in the short-term. We use the value function as a measure of the
	admittance cost for packet dispatching given the current queueing states, and
	formulate the SDPD problem as a convex programming problem. We derive the
	close-form solutions for both problems for the special case of two RATs, and
	adopt the dual decomposition technique as the solution for the general cases.
	Simulation results are presented to compare the performance of the proposed
	schemes with existing solutions.
NXT03NS2	TITLE: Toward Optimal Adaptive Wireless Communications in Unknown
	Environments
	ABSTRACT: Designing efficient channel access schemes for wireless
	communications without any prior knowledge about the nature of
	environments has been a very challenging issue, in which the channel state
	distribution of all spectrum resources could be entirely or partially stochastic or
	adversarial at different times and locations. In this paper, we propose an online
	learning algorithm for adaptive channel access of wireless communications in

	unknown environments based on the theory of multiarmed bandits (MAB)
	problems. By automatically tuning two control parameters, i.e., learning rate
	and exploration probability, our algorithms could find the optimal channel
	access strategies and achieve the almost optimal learning performance over
	time in different scenarios. The quantitative performance studies indicate the
	superior throughput gain when compared with previous solutions and the
	flexibility of our algorithm in practice, which is resilient to both oblivious and
	adaptive jamming attacks with different intelligence and attacking strength
	that ranges from no-attack to the full-attack of all spectrum resources. We
	conduct extensive simulations to validate our theoretical analysis.
NXT04NS2	TITLE: Adaptive Pilot Clustering in Heterogeneous Massive MIMO Networks
	ABSTRACT: We consider the uplink of a cellular massive MIMO network.
	Acquiring channel state information at the base stations (BSs) requires uplink
	pilot signaling. Since the number of orthogonal pilot sequences is limited by the
	channel coherence, pilot reuse across cells is necessary to achieve high spectral
	efficiency. However, finding efficient pilot reuse patterns is nontrivial especially
	in practical asymmetric BS deployments. We approach this problem using
	coalitional game theory. Each BS has a few unique pilots and can form
	coalitions with other BSs to gain access to more pilots. The BSs in a coalition
	thus benefit from serving more users in their cells, at the expense of higher
	pilot contamination and interference. Given that a cell's average spectral
	efficiency depends on the overall pilot reuse pattern, the suitable coalitional
	game model is in partition form. We develop a low-complexity distributed
	coalition formation based on individual stability. By incorporating a base
	station intercommunication budget constraint, we are able to control the
	overhead in message exchange between the base stations and ensure the
	algorithm's convergence to a solution of the game called individually stable
	coalition structure. Simulation results reveal fast algorithmic convergence and
	substantial performance gains over the baseline schemes with no pilot reuse,

	full pilot reuse, or random pilot reuse pattern.
NXT05NS2	TITLE: Data Aggregation and Principal Component Analysis in WSNs
	ABSTRACT: Data aggregation plays an important role inWireless Sensor
	Networks (WSNs) as far as it reduces power consumption and boosts the
	scalability of the network, specially in topologies that are prone to bottlenecks
	(e.g. cluster-trees). Existing works in the literature use clustering approaches,
	Principal Component Analysis (PCA) and/or Compressed Sensing (CS)
	strategies. Our contribution is aligned with PCA and explores whether a
	projection basis that is not the eigenvectors basis may be valid to sustain a
	Normalized Mean Squared Error (NMSE) threshold in signal reconstruction and
	reduce the energy consumption. We derivate first the NSME achieved with the
	new basis and elaborate then on the Jacobi eigenvalue decomposition ideas to
	propose a new subspace-based data aggregation method. The proposed
	solution reduces transmissions among the sink and one or more Data
	Aggregation Nodes (DANs) in the network. In our simulations we consider
	without loss of generality a single cluster network and results show that the
	new technique succeeds in satisfying the NMSE requirement and gets close in
	terms of energy consumption to the best possible solution employing subspace
	representations. Additionally the proposed method alleviates the
	computational load with respect to an eigenvector-based strategy (by a factor
	of six in our simulations).
NXT06NS2	TITLE: A New cost-effective approach for Battlefield Surveillance in Wireless
	Sensor Networks
	ABSTRACT: Assuring security (in the form of attacking mode as well as in
	safeguard mode) and at the same time keeping strong eye on the opposition's
	status (position, quantity, availability) is the key responsibility of a commander
	in the battlefield. Battlefield surveillance is one of the strong applications of
	Wireless Sensor Networks (WSNs). A commander is not only liable to his above
	responsibilities, but also to manage his duties in an efficient way. For this

www.nxtlogic.com | www.nxtproject.com

reason, ensuring maximum destruction with minimum resources is a major concern of a commander in the battlefield. This paper focuses on the maximum destruction problem in military affairs. In the work of Jaigirdar and Islam (2012), the authors proposed two novel algorithms (Maximum degree analysis and Maximum clique analysis) that ensure the efficiency and cost-effectiveness of the above problem. A comparative study explaining the number of resources required for commencing required level of destruction made to the opponents has been provided in the paper. In this paper the authors have come forward with another algorithm for the same problem. With the simulation studies and comparative analysis of the same example set the authors in this paper demonstrate the effectiveness (in both the quality and quantity) of the new method to be best among the three.

NXT07NS2 TITLE: Energy-Efficient Cooperative Relaying for Unmanned Aerial Vehicles

ABSTRACT: Airborne relaying can extend wireless sensor networks (WSNs) to remote human-unfriendly terrains. However, lossy airborne channels and limited battery of unmanned aerial vehicles (UAVs) are critical issues, adversely affecting success rate and network lifetime, especially in real-time applications. We propose an energy-efficient cooperative relaying scheme which extends network lifetime while guaranteeing the success rate. The optimal transmission schedule of the UAVs is formulated to minimize the maximum (min-max) energy consumption under guaranteed bit error rates, and can be judiciously reformulated and solved using standard optimisation techniques. We also propose a computationally efficient suboptimal algorithm to reduce the scheduling complexity, where energy balancing and rate adaptation are decoupled and carried out in a recursive alternating manner. Simulation results confirm that the suboptimal algorithm cuts off the complexity by orders of magnitude with marginal loss of the optimal network yield (throughput) and lifetime. The proposed suboptimal algorithm can also save energy by 50

	percent, increase network yield by 15 percent, and extend network lifetime by
	33 percent, compared to the prior art.
NXT08NS2	TITLE: CANS: Towards Congestion-Adaptive and Small Stretch Emergency
	Navigation with Wireless Sensor Networks
	ABSTRACT: One of the major applications of wireless sensor networks (WSNs)
	is the navigation service for emergency evacuation, the goal of which is to
	assist people in escaping from a hazardous region safely and quickly when an
	emergency occurs. Most existing solutions focus on finding the safest path for
	each person, while ignoring possible large detours and congestions caused by
	plenty of people rushing to the exit. In this paper, we present CANS, a C
	ongestion-Adaptive and small stretch emergency Navigation algorithm with
	WSNs. Specifically, CANS leverages the idea of level set method to track the
	evolution of the exit and the boundary of the hazardous area, so that people
	nearby the hazardous area achieve a mild congestion at the cost of a slight
	detour, while people distant from the danger avoid unnecessary detours. CANS
	also considers the situation in the event of emergency dynamics by
	incorporating a local yet simple status updating scheme. To the best of our
	knowledge, CANS is the first WSN-assisted emergency navigation algorithm
	achieving both mild congestion and small stretch, where all operations are in-
	situ carri ed out by cyber-physical interactions
	among people and sensor nodes. CANS does not require location information,
	nor the reliance on any particular communication model. It is also distributed
	and scalable to the size of the network with limited storage on each node. Both
	experiments and simulations validate the effectiveness and efficiency of CANS.

NXT09NS2	TITLE: A Traffic Adaptive Multi-Channel MAC Protocol with Dynamic Slot
	Allocation for WSNs
	ABSTRACT: Using low duty-cycle is the most common technique to extend the
	system lifetime in WSNs. However, it also implies limited throughput and long
	delay and the penalty is even higher under variable traffic patterns. In this
	paper, we present iQueue-MAC, a hybrid CSMA/TDMA MAC that adapts to
	variable/bursty traffic. With light load, iQueue-MAC uses a contention-based
	CSMA mechanism that provides low delay with scattered transmissions. When
	traffic increases, detected by a forming backlog in the sender, iQueue-MAC
	changes to a contention-free TDMA mechanism allocating transmission slots.
	Thus, iQueue-MAC mitigates packet buffering and reduces packet delay,
	combining the best of TDMA and CSMA. In this paper we also show how
	iQueue-MAC can operate in both single and multi channel modes. We
	implemented it on SIM32W108 chips together with other reference WSN
	protocols for comparison. iQueue-MAC exhibits similar figures during light
	traffic. However, with bursty traffic its throughput can be five times that of
	CoSenS and Ri-MAC-MC and its delay 20 times lower. Finally, iQueue-MAC is
	able to effectively use multiple channels, duplicating its throughput when
	compared to single channel operation.
NXT10NS2	TITLE: Distributed Workload Dissemination for Makespan Minimization in
	Disruption Tolerant Networks
	ABSTRACT: Mobile devices are undergoing explosive proliferation today.
	Although they are gaining more and more capabilities, they still fall short to
	execute complex applications. One possible solution to alleviate this limitation
	is offloading tasks to remote clouds. However, it may require persistent
	connectivity to the Internet and thus is not always available or affordable. An
	alternative solution is taking advantage of pervasive mobile devices and their
	pairwise encounters. In this paradigm, complex tasks from mobile devices are

www.nxtlogic.com | www.nxtproject.com

processed in a distributed and collaborative fashion on all mobile devices that are loosely-connected. Working towards this vision, this paper studies the following problem: given a task that originates at some node in a Disruption Tolerant Network (DTN), how are we to disseminate the task's workload during the pairwise contacts among mobile devices to achieve makespan minimization? We first imagine access to an oracle that has global and future knowledge of node mobility, and we design a provably-optimal centralized polynomial-time solution as the benchmark for comparison. With the insights obtained from the centralized solution, we then develop a distributed dissemination algorithm, D2, which maintains certain neighborhood information at individual nodes. D2 makes dissemination decisions based on the estimations of the potential computational capacities and the future workloads of mobile nodes. Extensive trace-driven simulations confirm the effectiveness of D2.

NXT11NS2 TITLE: Joint Optimization of Transmission Power Level and Packet Size for WSN Lifetime Maximization

ABSTRACT: In pursuit of better energy efficiency and enhanced network lifetime in wireless sensor networks (WSNs), two crucial factors are data packet size and transmission power level. On one hand, smaller packet size reduces the overall impact of bit error rates on packet loss. However, the consequence of smaller packet size is fragmentation into more data packets and thereby dissipation of increased energy. Hence, there emerges a delicate engineering tradeoff in deciding the data packet size, where both low and high data packet size decisions lead to certain energy inefficiency issues. On the other hand, increasing transmission power level decreases packet loss probability, which is another decision variable to optimize for maximizing network lifetime. Joint consideration problem for the objective of the network lifetime maximization. In

	this paper, we develop a realistic WSN link layer model built on top of the
	empirically verified energy dissipation characteristics of Mica2 motes
	and WSN channel models. We make use of the aforementioned link layer
	model to design a novel mixed integer programming (MIP) framework for the
	joint optimization of transmission power level and data packet size to take up
	the challenge introduced above. Numerical evaluations of the MIP framework
	with the analysis of the results over a large parameter space are performed to
	characterize the effects of joint optimization of packet size and power level
	on WSN lifetime.
NXT12NS2	TITLE: Improving Energy Efficiency of Mobile WSN Using Reconfigurable
	Directional Antennas
	ABSTRACT: Reconfigurable directional antennas (RDA) bring new opportunities
	to reduce data collision in wireless sensor networks (WSN). In this letter, a new
	reconfigurable directional antenna-based receiver-Initiated cycled receiver
	(RDA-RICER) medium access control (MAC) protocol is proposed for WSN nodes
	equipped with switched antennas. A low complexity and energy efficient
	scanning process is embedded in RDA-RICER to identify the direction providing
	the highest received signal strength Indicator between two nodes. OMNeT++
	simulation results for a single hop network show that data collision rate can be
	drastically reduced compared with related MAC protocols, leading to a
	significant decrease in energy consumption. Our approach is also validated in
	the field using WSN platforms equipped with a four-direction RDA, and
	powered by solar cells.

NXT13NS2	TITLE: RAEED-EA: A formally analysed energy efficient WSN routing protocol
	ABSTRACT: The operational efficiency and lifetime of Wireless Sensor Network
	(WSNs) suffers from several factors among which the security and energy
	consumption are the most important. Most of the WSN routing protocols are
	designed either from the perspective of security or energy. In this paper, the
	network lifetime of Robust Formally Analysed Protocol for Wireless Sensor
	Networks Deployment (RAEED) is improved by introducing a new version of
	RAEED called RAEED with energy-aware-routing (RAEED-EA). Energy aware
	routing requires introducing suitable changes in the third and final phase i.e.
	Data Forwarding Phase of RAEED. In RAEED the decision of selecting the next
	node was entirely based on the throughput of the target nodes, whereas in
	RAEED-EA the decision is taken based upon residual energy and throughput of
	the target nodes. For performance evaluation formal verification is used and
	these protocols are compared in terms of minimum network lifetime. Results
	show that by changing the network topology the gain in network lifetime of a
	network using RAEED-EA over RAEED ranges from 3 percent to 40 percent.
NXT14NS2	TITLE: Design and performance evaluation of an energy efficient routing
	protocol for Wireless Sensor Networks
	ABSTRACT: In recent years, the advancements in wireless communications and
	electronics have enabled the development of low-cost, low-power and multi-
	functional Wireless Sensor Networks (WSNs). As nodes in sensor networks are
	equipped with a limited power source, efficient utilization of power is a very
	important issue in order to extend the network lifetime. In this paper, a routing
	protocol namely GAICH (Genetic Algorithm Inspired Clustering Hierarchy) that
	provide efficient energy management for WSNs is proposed. This protocol
	makes use of Genetic Algorithm(GA) to create optimum clusters in terms of
	energy consumption. Using a standard radio energy dissipation model that is
	used for the simulation of WSNs, the performance of this algorithm is

	simulated and compared with an already existing LEACH routing protocol for
	WSNs.
NXT15NS2	TITLE: Evaluation of the Energy Consumption and the Packet Loss in WSNs
	Using Deterministic Stochastic Petri Nets
	ABSTRACT: When developing critical and complex systems, the analysis and
	the performance evaluation of the designed system is a challenging task.
	Wireless Sensor Networks (WSNs) are examples of such systems. A WSN
	consists of a large amount of distributed nodes which monitor physical or
	environmental conditions. In this paper, we address the problem of how WSNs
	must be designed to have good performances in particular the energy
	consumption and the packet loss ratio. To do so, we use an expressive kind of
	Petri Nets called Deterministic Stochastic Petri Nets. To show the applicability
	of the proposed model, one of routing techniques dedicated for WSNs is
	presented.
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless Sensor Networks
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping WirelessSensor NetworksABSTRACT: In this paper, we consider a compressive sleeping wireless sensor
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless Sensor Networks ABSTRACT: In this paper, we consider a compressive sleeping wireless sensor network (WSN) for monitoring parameters in the sensor field, where only a
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless Sensor Networks ABSTRACT: In this paper, we consider a compressive sleeping wireless sensor network (WSN) for monitoring parameters in the sensor field, where only a fraction of sensor nodes (SNs) are activated to perform the sensing task and
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless Sensor Networks ABSTRACT: In this paper, we consider a compressive sleeping wireless sensor network (WSN) for monitoring parameters in the sensor field, where only a fraction of sensor nodes (SNs) are activated to perform the sensing task and their data are gathered at a fusion center (FC) to estimate all the other SNs'
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless Sensor Networks ABSTRACT: In this paper, we consider a compressive sleeping wireless sensor network (WSN) for monitoring parameters in the sensor field, where only a fraction of sensor nodes (SNs) are activated to perform the sensing task and their data are gathered at a fusion center (FC) to estimate all the other SNs' data using the compressive sensing (CS) principle. Typically, research published
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless Sensor Networks ABSTRACT: In this paper, we consider a compressive sleeping wireless sensor network (WSN) for monitoring parameters in the sensor field, where only a fraction of sensor nodes (SNs) are activated to perform the sensing task and their data are gathered at a fusion center (FC) to estimate all the other SNs' data using the compressive sensing (CS) principle. Typically, research published concerning CS implicitly assume the sampling costs for all samples are equal
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless Sensor Networks ABSTRACT: In this paper, we consider a compressive sleeping wireless sensor network (WSN) for monitoring parameters in the sensor field, where only a fraction of sensor nodes (SNs) are activated to perform the sensing task and their data are gathered at a fusion center (FC) to estimate all the other SNs' data using the compressive sensing (CS) principle. Typically, research published concerning CS implicitly assume the sampling costs for all samples are equal and suggest random sampling as an appropriate approach to achieve good
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless Sensor Networks ABSTRACT: In this paper, we consider a compressive sleeping wireless sensor network (WSN) for monitoring parameters in the sensor field, where only a fraction of sensor nodes (SNs) are activated to perform the sensing task and their data are gathered at a fusion center (FC) to estimate all the other SNs' data using the compressive sensing (CS) principle. Typically, research published concerning CS implicitly assume the sampling costs for all samples are equal and suggest random sampling as an appropriate approach to achieve good reconstruction accuracy. However, this assumption does not hold for
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless Sensor Networks ABSTRACT: In this paper, we consider a compressive sleeping wireless sensor network (WSN) for monitoring parameters in the sensor field, where only a fraction of sensor nodes (SNs) are activated to perform the sensing task and their data are gathered at a fusion center (FC) to estimate all the other SNs' data using the compressive sensing (CS) principle. Typically, research published concerning CS implicitly assume the sampling costs for all samples are equal and suggest random sampling as an appropriate approach to achieve good reconstruction accuracy. However, this assumption does not hold for compressive sleeping WSNs, which have significant variability in sampling cost
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless Sensor Networks ABSTRACT: In this paper, we consider a compressive sleeping wireless sensor network (WSN) for monitoring parameters in the sensor field, where only a fraction of sensor nodes (SNs) are activated to perform the sensing task and their data are gathered at a fusion center (FC) to estimate all the other SNs' data using the compressive sensing (CS) principle. Typically, research published concerning CS implicitly assume the sampling costs for all samples are equal and suggest random sampling as an appropriate approach to achieve good reconstruction accuracy. However, this assumption does not hold for compressive sleeping WSNs, which have significant variability in sampling cost owing to the different physical conditions at particular SNs. To exploit this
NXT16NS2	TITLE: Cost-Aware Activity Scheduling for Compressive Sleeping Wireless Sensor Networks ABSTRACT: In this paper, we consider a compressive sleeping wireless sensor network (WSN) for monitoring parameters in the sensor field, where only a fraction of sensor nodes (SNs) are activated to perform the sensing task and their data are gathered at a fusion center (FC) to estimate all the other SNs' data using the compressive sensing (CS) principle. Typically, research published concerning CS implicitly assume the sampling costs for all samples are equal and suggest random sampling as an appropriate approach to achieve good reconstruction accuracy. However, this assumption does not hold for compressive sleeping WSNs, which have significant variability in sampling cost owing to the different physical conditions at particular SNs. To exploit this sampling cost nonuniformity, we propose a cost-aware activity scheduling

mutual coherence of the equivalent sensing matrix. In addition, for the case with prior information about the signal support, we extend the proposed approach to incorporate the prior information by considering an additional constraint on the mean square error (MSE) of the oracle estimator for sparse recovery. Our numerical experiments demonstrate that, in comparison with other designs in the literature, the proposed activity scheduling approaches lead to improved tradeoffs between reconstruction accuracy and sampling cost for compressive sleeping WSNs.

NXT17NS2 TITLE: A Kautz-Based Wireless Sensor and Actuator Network for Real-Time, Fault-Tolerant and Energy-Efficient Transmission

ABSTRACT: Wireless sensor and actuator networks (WSANs) are composed of sensors and actuators to perform distributed sensing and actuating tasks. Most WSAN applications (e.g., fire detection) demand that actuators rapidly respond to observed events. Therefore, real-time (i.e., fast) and fault-tolerant transmission is a critical requirement in WSANs to enable sensed data to reach actuators reliably and quickly. Due to limited power resources, energyefficiency is another crucial requirement. Such requirements become formidably challenging in large-scale WSANs. However, existing WSANs fall short in meeting these requirements. To this end, we first theoretically study the Kautz graph for its applicability in WSANs to meet these requirements. We then propose a Kautz-based REal-time, Fault-tolerant and EneRgy-efficient WSAN (REFER). REFER embeds Kautz graphs into the physical topology of a WSAN for real-time communication and connects the Kautz graphs using distributed hash table (DHT) for high scalability. We also theoretically study routing paths in the Kautz graph, based on which we develop an efficient faulttolerant routing protocol. It enables a relay node to quickly and efficiently identify the next shortest path from itself to the destination based only on node IDs upon routing failure, rather than relying on retransmission from the

source. REFER is advantageous over previous Kautz graph based works in that it does not need an energy-consuming protocol to find the next shortest path and it preserves the consistency between the overlay and physical topology. We further improve routing in REFER by multi-path based routing and energyefficient multicasting within and between Kautz graph cells, respectively. Extensive experimental results demonstrate the superior performance of REFER in comparison with existing WSAN systems in terms of real-time communication, energy-efficiency, fault-tolerance and scalability.

NXT18NS2 TITLE: Cluster-Based Routing for the Mobile Sink inWireless Sensor Networks With Obstacles

ABSTRACT: In wireless sensor networks (WSNs), the bene ts of exploiting the sink mobility to prolongnetwork lifetime have been well recognized. In physical environments, all kinds of obstacles could exit in the sensing eld. Therefore, a research challenge is how to ef ciently dispatch the mobile sink to nd anobstacle-avoiding shortest route. This paper presents an energyef cient routing mechanism based on thecluster-based method for the mobile sink in WSNs with obstacles. According to the cluster-based method, the nodes selected as cluster heads collect data from their cluster members and transfer the data collected to the mobile sink. In this paper, the mobile sink starts the data-gathering route periodically from thestarting site, then directly collects data from these cluster heads in a single-hop range, and nally returns to the starting site. However, due to the complexity of the scheduling problem in WSNs with obstacles, the conventional algorithms are dif cult to resolve. To remedy this issue, we propose an ef cient schedulingmechanism based on spanning graphs in this paper. Based on the spanning graph, we present a heuristictour-planning algorithm for the mobile sink to nd the obstacleavoiding shortest route. Simulation results verify the effectiveness of our method.

NXT19NS2	TITLE: Code-Based Neighbor Discovery Protocols in Mobile Wireless Networks
	ABSTRACT: In mobile wireless networks, the emerging proximity-based
	applications have led to the need for highly effective and energy-efficient
	neighbor discovery protocols. However, existing works cannot realize the
	optimal worst-case latency in the symmetric case, and their performances with
	asymmetric duty cycles can still be improved. In this paper, we investigate
	asynchronous neighbor discovery through a code-based approach, including
	the symmetric and asymmetric cases. We derive the tight worst-case latency
	bound in the case of symmetric duty cycle. We design a novel class of
	symmetric patterns called Diff-Codes, which is optimal when the Diff-Code can
	be extended from a perfect difference set. We further consider the asymmetric
	case and design ADiff-Codes. To evaluate (A)Diff-Codes, we conduct both
	simulations and testbed experiments. Both simulation and experiment results
	show that (A)Diff-Codes significantly outperform existing neighbor discovery
	protocols in both the median case and worst case. Specifically, in the
	symmetric case, the maximum worst-case improvement is up to 50%; in both
	symmetric and asymmetric cases, the median case gain is as high as 30%.
NXT20NS2	TITLE: DaGCM: A Concurrent Data Uploading Framework for Mobile Data
	Gathering in Wireless Sensor Networks
	ABSTRACT: Data uploading time constitutes a large portion of mobile data
	gathering time in wireless sensor networks. By equipping multiple antennas on
	the mobile collector, data uploading time can be greatly shortened. However,
	previous works only treated wireless link capacity as a constant and ignored
	power control on sensors, which would significantly deviate from the real
	wireless environments. To overcome this problem, in this paper we propose a
	new data gathering cost minimization framework for mobile data gathering in
	wireless sensor networks by considering dynamic wireless link capacity and
	power control jointly. Our new framework not only allows concurrent data

www.nxtlogic.com | www.nxtproject.com

uploading from sensors to the mobile collector, but also determines transmission power under elastic link capacities. We study the problem under constraints of flow conservation, energy consumption, elastic link capacity, transmission compatibility, and Sojourn time. We employ the subgradient iteration algorithm to solve the minimization problem. We first relax the problem with Lagrangian dualization, then decompose the original problem into several subproblems, and present distributed algorithms to derive data rate, link flow and routing, power control, and transmission compatibility. For the mobile collector, we also propose a sub-algorithm to determine sojourn time at different stopping locations. Finally, we provide extensive simulation results to demonstrate the convergence and robustness of proposed algorithms. The results reveal 20 percent shorter data collection latency on average with lower energy consumptions compared to previous works as well as lower data gathering cost and robustness in case of node failures.

NXT21NS2 TITLE: Dictionary Based Secure Provenance Compression for Wireless Sensor Networks

ABSTRACT: Due to energy and bandwidth limitations of wireless sensor networks (WSNs), it is crucial that data provenance for these networks be as compact as possible. Even if lossy compression techniques are used for encoding provenance information, the size of the provenance increases with the number of nodes traversed by the network packets. To address such issues, we propose a dictionary based provenance scheme. In our approach, each sensor node in the network stores a packet path dictionary. With the support of this dictionary, a path index instead of the path itself is enclosed with each packet. Since the packet path index is a code word of a dictionary, its size is independent of the number of nodes present in the packet's path. Furthermore, as our scheme binds the packet and its provenance through an AM-FM sketch and uses a secure packet sequence number generation

	technique, it can defend against most of the known provenance attacks.
	Through simulation and experimental results, we show that our scheme
	outperforms other compact provenance schemes with respect to provenance
	size, robustness, and energy consumption.
NXT22NS2	TITLE: Distributed Emergency Guiding with Evacuation Time Optimization
	Based on Wireless Sensor Networks
	ABSTRACT: This paper proposes a load-balancing framework for distributed
	emergency guiding based on wireless sensor networks. A load-balancing
	guiding scheme is designed and an analytical model is derived to reduce the
	total evacuation time of people indoors. The guiding scheme can provide the
	fastest path for people to reach an exit according to the evacuation time
	estimated using the analytical model. Based on thorough research, this is the
	first distributed solution in which corridor capacity and length, exit capacity,
	and the concurrent movement and distribution of people are considered in
	estimating the evacuation time and planning escape paths. Using the proposed
	framework, congestion in corridors and at exits can be eased to substantially
	reduce the total evacuation time. Analytical and simulation results show that
	this approach outperforms existing schemes and can prevent people from
	following localoptimal guiding directions that increase the evacuation time. A
	prototype called the Load-balancing Emergency Guiding System (LEGS) is
	implemented; this system can be used to compare the evacuation times and
	guiding directions provided by existing schemes and the proposed scheme for
	various distributions of people.
NXT23NS2	TITLE: Duplicate Detectable Opportunistic Forwarding in Duty-Cycled Wireless
	Sensor Networks
	ABSTRACT: Opportunistic routing, offering relatively efficient and adaptive
	forwarding in low-duty-cycled sensor networks, generally allows multiple
	nodes to forward the same packet simultaneously, especially in networks with

	intensive traffic. Uncoordinated transmissions often incur a number of
	duplicate packets, which are further forwarded in the network, occupy the
	limited network resource, and hinder the packet delivery performance. Existing
	solutions to this issue, e.g., overhearing or coordination based approaches,
	either cannot scale up with the system size, or suffer high control overhead.
	We present Duplicate-Detectable Opportunistic Forwarding (DOF), a duplicate-
	free opportunistic forwarding protocol for low-duty-cycled wireless sensor
	networks. DOF enables senders to obtain the information of all potential
	forwarders via a slotted acknowledgment scheme, so the data packets can be
	sent to the deterministic next-hop forwarder. Based on light-weight
	coordination, DOF explores the opportunities as many as possible and removes
	duplicate packets from the forwarding process. We implement DOF and
	evaluate its performance on an indoor testbed with 20 TelosB nodes. The
	experimental results show that DOF reduces the average duplicate ratio by
	90%, compared to state-of-the-art opportunistic protocols, and achieves 61.5%
	enhancement in network yield and 51.4% saving in energy consumption.
NXT24NS2	TITLE: Fair Routing for Overlapped Cooperative Heterogeneous Wireless
	Sensor Networks
	Sensor Networks ABSTRACT: In recent years, as wireless sensor networks (WSNs) are widely
	Sensor Networks ABSTRACT: In recent years, as wireless sensor networks (WSNs) are widely diffused, multiple overlapping WSNs constructed on the same area become
	Sensor Networks ABSTRACT: In recent years, as wireless sensor networks (WSNs) are widely diffused, multiple overlapping WSNs constructed on the same area become more common. In such a situation, their lifetime is expected to be extended by
	Sensor Networks ABSTRACT: In recent years, as wireless sensor networks (WSNs) are widely diffused, multiple overlapping WSNs constructed on the same area become more common. In such a situation, their lifetime is expected to be extended by cooperative packet forwarding. Although some researchers have studied about
	Sensor Networks ABSTRACT: In recent years, as wireless sensor networks (WSNs) are widely diffused, multiple overlapping WSNs constructed on the same area become more common. In such a situation, their lifetime is expected to be extended by cooperative packet forwarding. Although some researchers have studied about cooperation in multiple WSNs, most of them do not consider the heterogeneity
	Sensor Networks ABSTRACT: In recent years, as wireless sensor networks (WSNs) are widely diffused, multiple overlapping WSNs constructed on the same area become more common. In such a situation, their lifetime is expected to be extended by cooperative packet forwarding. Although some researchers have studied about cooperation in multiple WSNs, most of them do not consider the heterogeneity in the characteristics of each WSN such as battery capacity, operation start
	Sensor Networks ABSTRACT: In recent years, as wireless sensor networks (WSNs) are widely diffused, multiple overlapping WSNs constructed on the same area become more common. In such a situation, their lifetime is expected to be extended by cooperative packet forwarding. Although some researchers have studied about cooperation in multiple WSNs, most of them do not consider the heterogeneity in the characteristics of each WSN such as battery capacity, operation start time, the number of nodes, nodes locations, energy consumption, packet size
	Sensor Networks ABSTRACT: In recent years, as wireless sensor networks (WSNs) are widely diffused, multiple overlapping WSNs constructed on the same area become more common. In such a situation, their lifetime is expected to be extended by cooperative packet forwarding. Although some researchers have studied about cooperation in multiple WSNs, most of them do not consider the heterogeneity in the characteristics of each WSN such as battery capacity, operation start time, the number of nodes, nodes locations, energy consumption, packet size and/or data transmission timing, and so on. In a heterogeneous environment,
	Sensor Networks ABSTRACT: In recent years, as wireless sensor networks (WSNs) are widely diffused, multiple overlapping WSNs constructed on the same area become more common. In such a situation, their lifetime is expected to be extended by cooperative packet forwarding. Although some researchers have studied about cooperation in multiple WSNs, most of them do not consider the heterogeneity in the characteristics of each WSN such as battery capacity, operation start time, the number of nodes, nodes locations, energy consumption, packet size and/or data transmission timing, and so on. In a heterogeneous environment, naive lifetime improvement with cooperation may not be fair. In this paper, we

	WSNs. It introduces an energy pool to maintain the total amount of energy
	consumption by cooperative forwarding. The energy pool plays a role of broker
	for fair cooperation. Finally, simulation results show the excellent performance
	of the proposed method.
NXT25NS2	TITLE: Geographic and Opportunistic Routing for Underwater Sensor
	Networks
	ABSTRACT: Underwater wireless sensor networks (UWSNs) have been showed
	as a promising technology to monitor and explore the oceans in lieu of
	traditional undersea wireline instruments. Nevertheless, the data gathering of
	UWSNs is still severely limited because of the acoustic channel communication
	characteristics. One way to improve the data collection in UWSNs is through
	the design of routing protocols considering the unique characteristics of the
	underwater acoustic communication and the highly dynamic network topology.
	In this paper, we propose the GEDAR routing protocol for UWSNs. GEDAR is an
	anycast, geographic and opportunistic routing protocol that routes data
	packets from sensor nodes to multiple sonobuoys (sinks) at the sea's surface.
	When the node is in a communication void region, GEDAR switches to the
	recovery mode procedure which is based on topology control through the
	depth adjustment of the void nodes, instead of the traditional approaches
	using control messages to discover and maintain routing paths along void
	regions. Simulation results show that GEDAR significantly improves the
	network performance when compared with the baseline solutions, even in
	hard and difficult mobile scenarios of very sparse and very dense networks and
	for high network traffic loads.

	MANETS
NXT26NS2	TITLE: Mitigating Denial Of Service Attacks In Olsr Protocol Using Fictitious
	Nodes
	ABSTRACT: With The Main Focus Of Research In Routing Protocols For Mobile
	Ad-Hoc Networks (Manet) Geared Towards Routing Efficiency, The Resulting
	Protocols Tend To Be Vulnerable To Various Attacks. Over The Years, Emphasis
	Has Also Been Placed On Improving The Security Of These Networks. Different
	Solutions Have Been Proposed For Different Types Of Attacks, However, These
	Solutions Often Compromise Routing Efficiency Or Network Overload. One
	Major Dos Attack Against The Optimized Link State Routing Protocol (Olsr)
	Known As The Node Isolation Attack Occurs When Topological Knowledge Of
	The Network Is Exploited By An Attacker Who Is Able To Isolate The Victim
	From The Rest Of The Network And Subsequently Deny Communication
	Services To The Victim. In This Paper, We Suggest A Novel Solution To Defend
	The Olsr Protocol From Node Isolation Attack By Employing The Same Tactics
	Used By The Attack Itself. Through Extensive Experimentation, We
	Demonstrate That 1) The Proposed Protection Prevents More Than 95 Percent
	Of Attacks, And 2) The Overhead Required Drastically Decreases As The
	Network Size Increases Until It Is Non-Discernable. Last, We Suggest That This
	Type Of Solution Can Be Extended To Other Similar Dos Attacks On Olsr.
NXT27NS2	TITLE: Trust Management using Probabilistic Energy-Aware Monitoring for
	Intrusion Detection in Mobile Ad-Hoc Networks
	ABSTRACT: The security is a key aspect in Mobile Ad-hoc Networks (MANETs),
	because the communication between the nodes is obtained using the wireless
	transmission, and the network setup is done without an infrastructure. In this
	scenario it is possible to perform internal and external attacks compromising
	the network functions. Moreover, the adoption of Intrusion Detection System
	(IDS) to discover internal attacks is often energy consuming highly reducing the

	network lifetime. At this purpose, our proposal is the design and adoption of an
	energy-aware probabilistic monitoring module useful to IDS, to better perform
	in a MANET scenario where not only security but also energy constraints need
	to be accounted. The proposed scheme has been analyzed by an energy point
	of view and considering also its efficacy to discover malicious nodes under
	different network conditions.
NXT28NS2	TITLE: Secure and Energy Efficient MANET Routing Incorporating Trust Values
	using Hybrid ACO
	ABSTRACT: Routing in a MANET varies considerably from the other networks
	due to the fact that MANET, being an ad-hoc network does not follow a specific
	topology and the nodes are dynamic. Further, power consumption is another
	major aspect, which needs to be kept in check, as the depleted nodes tend to
	become selfish. This paper presents a Hybrid Ant Colony Optimization based
	routing algorithm that generates routes dynamically, following the concept of
	equal load distribution in the network. The local search component of ACO is
	modified using Simulated Annealing to provide an effective and energy
	efficient node selection mechanism. Experiments show that the algorithm
	exhibits effective load distributions and also provides dynamic random paths.
NXT29NS2	TITLE: Fuzzy-Based Trust Model for Detection of Selfish Nodes in MANETs
	ABSTRACT: Cooperation among nodes is mandatory for smooth operation of
	Mobile Ad Hoc Networks (MANETs) in terms of data routing. A participating
	node may refuse to deplete its resources for the benefit of others because of
	not getting any direct advantage for its service. Nodes showing such behavior
	are called selfish or non-cooperative nodes. Non-cooperative nodes can
	severely affect the performance of MANETs. Non-cooperative behavior of
	nodes in the MANETs may lead to network partitioning. In this paper, we
	address the issue of non-cooperative behavior by incorporating the concept of
	fuzzy logic closely coupled with the concept of trust. Fuzzy-based analyzer is

www.nxtlogic.com | www.nxtproject.com

used to distinguish between the non-cooperative behavior nodes and trustworthy nodes. We propose a fuzzy-based scheme to detect and isolate non-cooperative nodes in MANETs. In the proposed scheme, every node in the network constantly monitors its one-hop neighbors for their actions. Every node computes the trust of the observed neighbors. These trust values are passed on to a fuzzy function which is mapped into different classes. The resulting classes show the trust levels of the observed nodes. On the basis of the calculated trust value, the non-cooperative nodes are detected and isolated from the active routes of the MANET. Proposed fuzzy-based scheme is robust enough in terms of detecting packet drop attack in the network. Results show that proposed scheme detects non-cooperative nodes effectively with low false positives rate. Moreover, proposed scheme increases the packet delivery ratio and throughput in the presence of non-cooperative nodes in the network.

NXT30NS2 TITLE: A Novel Approach for Efficient Usage of Intrusion Detection System in Mobile Ad Hoc Networks

ABSTRACT: Mobile Ad hoc Networks (MANET) are selfconfiguring, infrastructureless, dynamic wireless networks in which the nodes are resource constrained. Intrusion Detection Systems (IDS) are used in MANETs to monitor activities so as to detect any intrusion in the otherwise vulnerable network. In this paper, we present efficient schemes for analyzing and optimizing the time duration for which the intrusion detection systems need to remain active in a mobile ad hoc network. A probabilistic model is proposed that makes use of cooperation between IDSs among neighborhood nodes to reduce their individual active time. Usually, an IDS has to run all the time on every node to oversee the network behavior. This can turn out to be a costly overhead for a battery-powered mobile device in terms of power and computational resources. Hence, in this work our aim is to reduce the duration of active time

of the IDSs without compromising on their effectiveness. To validate our proposed approach, we model the interactions between IDSs as a multi-player cooperative game in which the players have partially cooperative and partially conflicting goals. We theoretically analyze this game and support it with simulation results.

NXT31NS2 TITLE: D2D: Delay-Aware Distributed Dynamic Adaptation of Contention Window in Wireless Networks

ABSTRACT: The IEEE 802.11e enhanced distributed channel access (EDCA) protocol follows class-based service differentiation for providing differentiated quality-of-service (QoS). However, its collision avoidance mechanism using backoff algorithm can be inefficient for providing improved performance with respect to throughput and channel access delay, especially in a high network configuration (i.e. number of stations) with imperfect wireless channel. The existing and emerging works have devoted considerable attention on tuning the backoff parameters for achieving optimal throughput only. The prior works do not consider the channel access delay and throughput metrics altogether for performance improvement. Additionally, in most of the cases, the optimal configuration of backoff parameters are performed by a centralized controller. In this paper, we propose a delay-aware distributed dynamic adaptation of contention window scheme, namely D2D, for the cumulative improvement of both the throughput and the channel access delay at runtime. The D2D scheme requires two ad-hoc, distributed, and easy-to-obtain estimates-delay deviation ratio and channel busyness ratio-of the present delay level and channel congestion status of the network, respectively. A key advantage of the D2D scheme is that it is compliant with the IEEE 802.11 standard, and, thus, can be seamlessly integrable with the existing wireless card. We show the integrated model of the medium access control protocol, namely D2D Channel Access (D2DCA), for the IEEE 802.11e networks. We further propose a two-

	dimensional Markov chain model of the D2DCA protocol for analyzing.
NXT32NS2	TITLE: Detecting Colluding Blackhole and Greyhole Attacks in Delay Tolerant
	Networks
	ABSTRACT: Delay Tolerant Network (DTN) is developed to cope with
	intermittent connectivity and long delay in wireless networks. Due to the
	limited connectivity, DTN is vulnerable to blackhole and greyhole attacks in
	which malicious nodes intentionally drop all or part of the received messages.
	Although existing proposals could accurately detect the attack launched by
	individuals, they fail to tackle the case that malicious nodes cooperate with
	each other to cheat the defense system. In this paper, we suggest a scheme
	called Statistical-based Detection of Blackhole and Greyhole attackers (SDBG)
	to address both individual and collusion attacks. Nodes are required to
	exchange their encounter record histories, based on which other nodes can
	evaluate their forwarding behaviors. To detect the individual misbehavior, we
	define forwarding ratio metrics that can distinguish the behavious of attackers
	from normal nodes. Malicious nodes might avoid being detected by colluding
	to manipulate their forwarding ratio metrics. To continuously drop messages
	and promote the metrics at the same time, attackers need to create fake
	encounter records frequently and with high forged numbers of sent messages.
	We exploit the abnormal pattern of appearance frequency and number of sent
	messages in fake encounters to design a robust algorithm to detect colluding
	attackers. Extensive simulation shows that our solution can work with various
	dropping probabilities and different number of attackers per collusion at high
	accuracy and low false positive.
NXT33NS2	TITLE: Distance-Based Location Management Utilizing Initial Position for
	Mobile Communication Networks
	ABSTRACT: This paper aims at improving the distance-based location
	management scheme for mobile communication networks. In location

	management, a mobile terminal (MT) is tracked based on its location-update
	area (LA). The improvement is brought about by joint optimization of LA center
	and LA size. For LA center optimization (LCO), we determine the optimal center
	position of the LA given the initial position of the MT upon each location
	update. The investigation of optimal LA center has eluded research to date.
	Based on the popular continuous-time random walk (CTRW) mobility model,
	we propose an analytical framework that uses a diffusion equation to
	determine the optimal LA center that minimizes the total cost of location
	management, consisting of the location update cost and terminal paging cost.
	This framework allows us to easily model the non-Markovian movement of the
	MT and evaluate the impact of various measurable physical parameters (such
	as length of road section, angle between road sections, and road section
	crossing time) and LA center. In particular, we show that proper LA center can
	significantly reduce the total cost. For example, for the circular LA and low
	Poisson call-arrival rate, optimizing the LA center alone has the potential of
	reducing the cost by up to 37 percent. Joint optimization of the LA center and
	terminal paging scheme can reduce the cost even further. Simulations results
	match the theoretical analysis to a gap within 3 percent, indicating that our
	theoretical model is very accurate.
NXT34NS2	TITLE: Top-k Query Processing and Malicious Node Identification Based on
	Node Grouping in MANETs
	ABSTRACT: In mobile ad hoc networks (MANETs), it is effective to retrieve data
	items using top-k query. However, accurate results may not be acquired in
	environments when malicious nodes are present. In this paper, we assume that
	malicious nodes attempt to replace necessary data items with unnecessary
	ones (we call these data replacement attacks), and propose methods for top-k
	query processing and malicious node identification based on node grouping in
	MANETs. In order to maintain the accuracy of the query result, nodes reply

www.nxtlogic.com | www.nxtproject.com

with k data items with the highest score along multiple routes, and the queryissuing node tries to detect attacks from the information attached to the reply messages. After detecting attacks, the query-issuing node tries to identify the malicious nodes through message exchanges with other nodes. When multiple malicious nodes are present, the query-issuing node may not be able to identify all malicious nodes at a single query. It is effective for a node to share information about the identified malicious nodes with other nodes. In our method, each node divides all nodes into groups by using the similarity of the information about the identified malicious nodes. Then, it identifies malicious nodes based on the information on the groups. We conduct simulation experiments by using a network simulator, QualNet5.2, to verify that our method achieves high accuracy of the query result and identifies malicious nodes.

NXT35NS2

TITLE: Resisting Blackhole Attacks on MANETs

ABSTRACT: MANET routing protocols are designed based on the assumption that all nodes cooperate without maliciously disrupting the operation of the routing protocol. AODV is a reactive MANET routing protocol that is vulnerable to a dramatic collapse of network performance in the presence of blackhole attack. The paper introduces a new concept of Self-Protocol Trustiness (SPT) in which detecting a malicious intruder is accomplished by complying with the normal protocol behavior and lures the malicious node to give an implicit avowal of its malicious behavior. We present a Blackhole Resisting Mechanism (BRM) to resist such attacks that can be incorporated into any reactive routing protocol. It does not require expensive cryptography or authentication mechanisms, but relies on locally applied timers and thresholds to classify nodes as malicious. No modifications to the packet formats are needed, so the overhead is a small amount of calculation at nodes, and no extra communication. Using NS2 simulation, we compare the performance of

	networks using AODV under blackhole attacks with and without our
	mechanism to SAODV, showing that it significantly reduces the effect of a
	blackhole attack.
NIVTOCNICO	TITLE becaut of tweet becaut a consistion and we billing on the delay
NX136N52	TITLE: Impact of trust-based security association and mobility on the delay
	metric in MANET
	ABSTRACT: Trust models in the literature of MANETs commonly assume that
	packets have different security requirements. Before a node forwards a packet,
	if the recipient's trust level does not meet the packet's requirement level, then
	the recipient must perform certain security association procedures, such as re-
	authentication. We present in this paper an analysis of the epidemic broadcast
	delay in such context. The network, mobility and trust models presented in this
	paper are quite generic and allow us to obtain the delay component induced
	only by the security associations along a path. Numerical results obtained by
	simulations also confirm the accuracy of the analysis. In particular, we can
	observe from both simulation's and analysis results that, for large and sparsely
	connected networks, the delay caused by security associations is very small
	compared to the total delay of a packet. This also means that parameters like
	network density and nodes' velocity, rather than any trust model parameter,
	have more impact on the overall delay.

www.nxtlogic.com | www.nxtproject.com

NXT37NS2 TITLE: ZigBee Wireless Dynamic Sensor Networks: Feasibility Analysis and Implementation Guide

ABSTRACT: The wireless sensor network (WSN) technology has attracted increasing attention considering its potential in many application fields. In most studies on WSNs, the network is assumed to cover several static devices over a fixed coverage area. As an extension of WSN capabilities, the devices mobility and the network dynamism provide a new chain of interesting applications defined as wireless dynamic sensor network (WDSN). The initial challenge in the WDSN is to investigate whether this dynamic imposed on the network will be supported, once the used network protocol must meet the requirements for WDSN applications, such as network formation and self-organization, route discovery and communication management with the input and output of devices on the network. In order to overcome these issues, specific wireless protocols have been developed to meet the applications with device mobility in the WSN. However, these specific protocols limit the development of the WSDN since, they are isolated and proprietary solutions, instead of using a standardized protocol for interoperability. This paper presents a feasibility analysis of the ZigBee protocol for the WDSN applications. A survey of application features and requirements, as well as a discussion of advantages and limitations, regarding the adoption of the ZigBee protocol in the WDSN is presented. An implementation guide for the ZigBee WDSN is proposed in order to assist a new application of this technology. Furthermore, a proof of concept using ZigBee devices validates the implementation guide and proves the ZigBee WDSN feasibility.

NXT38NS2	TITLE: Distributed and Adaptive Medium Access Control for Internet-of-
	Things-Enabled Mobile Networks
	ABSTRACT: In this paper, we propose a distributed and adaptive hybrid
	medium access control (DAH-MAC) scheme for a singlehop Internet-of-Things
	(IoT)-enabled mobile ad hoc network (MANET) supporting voice and data
	services. A hybrid superframe structure is designed to accommodate nacket
	transmissions from a varving number of mobile nodes generating either delay-
	consitive voice traffic or best effort data traffic. Within each superframe, voice
	nodes with packets to transmit access the channel in a contention free period
	using distributed time division multiple access (TDMA), while data pades
	using distributed time division multiple access (TDIVIA), while data nodes
	contend for channel access in a contention period using truncated carrier sense
	multiple access with collision avoidance (I-CSMA/CA). In the contention-free
	period, by adaptively allocating time slots according to instantaneous voice
	traffic load, the MAC exploits voice traffic multiplexing to increase the voice
	capacity. In the contention period, a throughput optimization framework is
	proposed for the DAH-MAC, which maximizes the aggregate data throughput
	by adjusting the optimal contention window size according to voice and data
	traffic load variations. Numerical results show that the proposed MAC scheme
	outperforms existing QoS-aware MAC schemes for voice and data traffic in the
	presence of heterogeneous traffic load dynamics.
NXT39NS2	TITLE: A role-based approach to secure routing in wireless ad-hoc networks
	ABSTRACT: The paper presents a brief overview of routing protocols in wireless
	ad-hoc networks. The main focus is on solving security issues. We conclude
	that the concept of trust is fundamental in the design of secure routing
	protocols today. Based on SAR (Security-Aware Ad-hoc Routing) protocol, we
	propose a role-based approach to secure routing. This approach enhances the
	flexibility and security of information flows in wireless ad-hoc networks. Some
	algorithmic solutions presented in order to apply this approach in other routing

	protocols. In the final part, the proposed approach and related algorithms were
	demonstrated by an example.
NXT40NS2	TITLE: Secure routing protocols for mobile ad hoc networks
	ABSTRACT: Mobile Ad hoc NETwork (MANET) is a collection of self-organizing
	mobile nodes without any help of centralized administration or established
	infrastructure. Due to this characteristic, MANETs are particularly vulnerable to
	various security threats. In addition, the design of most MANET routing
	protocols assumes that there is no malicious node in the network. Hence,
	several efforts and researches have been made toward the design of a secure
	and robust routing protocol for ad hoc networks. In this paper, we discuss the
	major attacks that can target the operation of ad hoc routing protocol. A
	detailed survey of the well-known secured ad hoc routing protocols for mobile
	ad hoc networks is presented. In order to analyze the existent solutions for
	securing ad hoc routing protocols in a structured manner, we have classified
	them into three categories: solutions based on cryptography, solutions based
	on one-way hash chain and hybrid solutions. This paper also gives a brief
	summary and comparison of various protocols available for secured routing
	in MANET.

www.nxtlogic.com | www.nxtproject.com

NXT41NS2 TITLE: Securely-entrusted multi-topology routing for community networks

ABSTRACT: Routing in open and decentralized networks relies on cooperation despite the participation of unknown nodes and node administrators pursuing heterogeneous trust and security goals. Living use cases for such environments are given by community mesh networks due to their open structure and decentralized management and ownership. However, despite many active work in the field of routing security for mesh and MANET networks, practical solutions enabling a secured but decentralized trust management are still missing, leaving nowadays existing community networks vulnerable to various attacks and seriously challenged by the obligation to find consensus on the trustability of participants within an increasing user size and diversity. This work presents the design, implementation and analysis of a routing protocol that enables cryptographically secured negotiation and establishment of concurrent and individually trusted routing topologies for infrastructure-less networks without relying on any central management. Benchmarking results, based on our initial implementation and tested on real and very cheap (10 Euro, Linux SoC) embedded routers, quantify the scalability of our approach supporting networks with hundreds of nodes and despite being based on supposedly CPU-expensive asymmetric cryptography.

www.nxtlogic.com | www.nxtproject.com

TITLE: Securing Mobile Ad Hoc Networks using distributed firewall with PKI NXT42NS2 **ABSTRACT:** The MANETs (Mobile Ad Hoc Networks) are increasing on popularity due to their dynamic nature, minimal infrastructure requirements, deployment cost and their self-configuring attributes. Advances in low power communications computing and and increase of transfer rates makes MANETs even more desired in different real world applications. These properties make them ideal for employment in tactical military and civil rapiddeployment networks, including emergency rescue operations and ad hoc disaster-relief networks. Every MANET node acts as a router, thus expanding communications range and creating even larger network. However, decentralized nature of MANETs makes them susceptible to insider and outsider attacks. In this paper, we define security model for MANETs using PKI (Public Key Infrastructure), Firewall and aspects of IPS (Intrusion Prevention System). Our model denies all communication by default. Nodes can access only other nodes and services they are authorized to. Every node contains same security model, which protects it against routing, network and surveillance attacks. Model helps mitigate and prevent against most common attacks. This approach helps nodes to protect against insider and outsider attackers and allows them to withstand security threats which would otherwise damage or cripple whole network.

NXT43NS2	TITLE: Group based analysis of AODV related protocols in MANET
	ABSTRACT: With an objective of study and analysis of power efficient routing
	protocols in Mobile Adhoc Network(MANET), this paper presents a report on
	performance of Adhoc On Demand Distant Vector (AODV)
	oriented MANET routing protocols which are founded on power aware
	techniques and also support quality of service parameters and resource
	reservation strategies. The comparison is based on the type and extent of delay
	management techniques, Quality of service conditions and resource
	reservation methods used by these important protocols while minimizing the
	end to end delay during transmission. Secondly the paper also presents a
	complete analysis on the mechanism of routing , advantages and scope for
	further improvement for research in these protocols which will provide
	sufficient information and scope for further research in this magnificent area
	of MANET.
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in MANETs
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in MANETs ABSTRACT: Ad-hoc network has opened a new dimension in wireless networks.
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in MANETs ABSTRACT: Ad-hoc network has opened a new dimension in wireless networks. It allows wireless nodes to communicate with each other in the absence of
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in MANETs ABSTRACT: Ad-hoc network has opened a new dimension in wireless networks. It allows wireless nodes to communicate with each other in the absence of centralized support. It does not follow any fixed infrastructure because of the
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in MANETs ABSTRACT: Ad-hoc network has opened a new dimension in wireless networks. It allows wireless nodes to communicate with each other in the absence of centralized support. It does not follow any fixed infrastructure because of the mobility of nodes and multi-path propagations. Link instability and node
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in MANETS ABSTRACT: Ad-hoc network has opened a new dimension in wireless networks. It allows wireless nodes to communicate with each other in the absence of centralized support. It does not follow any fixed infrastructure because of the mobility of nodes and multi-path propagations. Link instability and node mobility make routing a core issue in MANETs. A suitable and effective routing
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in MANETS ABSTRACT: Ad-hoc network has opened a new dimension in wireless networks. It allows wireless nodes to communicate with each other in the absence of centralized support. It does not follow any fixed infrastructure because of the mobility of nodes and multi-path propagations. Link instability and node mobility make routing a core issue in MANETs. A suitable and effective routing mechanism helps to extend the successful deployment of MANETs. In this
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in MANETS ABSTRACT: Ad-hoc network has opened a new dimension in wireless networks. It allows wireless nodes to communicate with each other in the absence of centralized support. It does not follow any fixed infrastructure because of the mobility of nodes and multi-path propagations. Link instability and node mobility make routing a core issue in MANETs. A suitable and effective routing mechanism helps to extend the successful deployment of MANETs. In this paper, we have simulated and analyzed two routing protocols: DSR (Dynamic
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in MANETs ABSTRACT: Ad-hoc network has opened a new dimension in wireless networks. It allows wireless nodes to communicate with each other in the absence of centralized support. It does not follow any fixed infrastructure because of the mobility of nodes and multi-path propagations. Link instability and node mobility make routing a core issue in MANETs. A suitable and effective routing mechanism helps to extend the successful deployment of MANETs. In this paper, we have simulated and analyzed two routing protocols: DSR (Dynamic Source Routing Protocol) and DYMO (Dynamic MANET On-demand Routing).
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in MANETs ABSTRACT: Ad-hoc network has opened a new dimension in wireless networks. It allows wireless nodes to communicate with each other in the absence of centralized support. It does not follow any fixed infrastructure because of the mobility of nodes and multi-path propagations. Link instability and node mobility make routing a core issue in MANETs. A suitable and effective routing mechanism helps to extend the successful deployment of MANETs. In this paper, we have simulated and analyzed two routing protocols: DSR (Dynamic Source Routing Protocol) and DYMO (Dynamic MANET On-demand Routing). Our simulations were conducted using the OMNET simulation tool. Simulation
NXT44NS2	TITLE: Simulation comparison and analysis of DSR and DYMO protocols in MANETS ABSTRACT: Ad-hoc network has opened a new dimension in wireless networks. It allows wireless nodes to communicate with each other in the absence of centralized support. It does not follow any fixed infrastructure because of the mobility of nodes and multi-path propagations. Link instability and node mobility make routing a core issue in MANETs. A suitable and effective routing mechanism helps to extend the successful deployment of MANETs. In this paper, we have simulated and analyzed two routing protocols: DSR (Dynamic Source Routing Protocol) and DYMO (Dynamic MANET On-demand Routing). Our simulations were conducted using the OMNET simulation tool. Simulation results showed a better performance of DYMO over DSR in terms of

NXT45NS2	TITLE: QoS Routing for MANET and Satellite Hybrid Network to Support
	Disaster Relives and Management
	ABSTRACT: Communication technologies are very important for disaster
	management. Satellite network's advantage of large coverage and Mobile Ad
	hoc Network's (MANET) advantage of high flexibility could be ideal for disaster
	management. In this paper, the authors propose a novel scheme for providing
	reliable wireless communications in disaster sites with a hybrid network of
	terrestrial MANET and satellite network. In comparison with normal wireless
	routing approaches, i.e. AODV and AOMDV, the proposed scheme could
	achieve higher packet delivery ratio, higher throughput and lower delay;
	meanwhile it could also balance traffic loads at gateways to maximum satellite
	links' utilization.
NXT46NS2	TITLE: Network security risk assessment method based on HMM and attack
	graph model
	ABSTRACT: The ever-increasing complexity of computer network and various
	new types of bugs make the network security become an ever-growing serious
	challenge. In the evaluation of network security risk, the cause-and-effect
	relationship between multiple attack steps can be described well in an attack
	graph model. However, its test result is uncertain. Focused on this issue, the
	method of fusing attack graph model and Hidden Markov model (HMM) was
	proposed. Firstly, the network environment and attacker's aggressive behavior
	were abstracted by the attack graph model; Secondly, the probabilistic
	mapping that was between network observation and attack status was
	established by the HMM; Finally, the Viterbi algorithm was used to calculate
	the maximum probability state transition sequence. Experimental results show
	that the maximum probability of the state transition sequence can be
	effectively calculated and then the attack intention can be accurately inferred
	by this dual model. This method provides a good configuration for network

	security administrators.
NXT47NS2	TITLE: Cooperation via Spectrum Sharing for Physical Layer Security in Device-
	to-Device Communications Underlaying Cellular Networks
	ABSTRACT: In this paper, we investigate the cooperation issue via spectrum
	sharing when employing physical layer security concept into the Device-to-
	Device (D2D) communications underlaying cellular networks. First, we derive
	the optimal joint power control solutions of the cellular communication links
	and D2D pairs in terms of the secrecy capacity under a simple cooperation case
	and further propose a secrecy-based access control scheme with best D2D pair
	selection mechanism. Then, we consider a more general case that multiple D2D
	pairs can access the same resource block (RB) and one D2D pair is also
	permitted to access multiple RBs, and provide a novel cooperation mechanism
	in the investigated network. Furthermore, we formulate the provided
	cooperation mechanism among cellular communication links and D2D pairs as
	a coalitional game. Then, based on a newly defined Max- Coalition order in the
	constructed game, we further propose a merge-and-split based coalition
	formation algorithm for cellular communication links and D2D pairs to achieve
	efficient and effective cooperation, leading to improved system secrecy rate
	and social welfare. Simulation results indicate the efficiency of the proposed
	secrecy-based access control scheme and the proposed merge-and-split based
	coalition formation algorithm.

NXT48NS2	TITLE: Physical Layer Security in Heterogeneous Cellular Networks
	ABSTRACT: The heterogeneous cellular network (HCN) is a promising approach
	to the deployment of 5G cellular networks. This paper comprehensively studies
	physical layer security in a multitier HCN where base stations (BSs), authorized
	users, and eavesdroppers are all randomly located. We first propose an access
	threshold-based secrecy mobile association policy that associates each user
	with the BS providing the maximum truncated average received signal power
	beyond a threshold. Under the proposed policy, we investigate the connection
	probability and secrecy probability of a randomly located user and provide
	tractable expressions for the two metrics. Asymptotic analysis reveals that
	setting a larger access threshold increases the connection probability while
	decreases the secrecy probability. We further evaluate the network-wide
	secrecy throughput and the minimum secrecy throughput per user with both
	connection and secrecy probability constraints. We show that introducing a
	properly chosen access threshold significantly enhances the secrecy
	throughput performance of a HCN.
NXT49NS2	TITLE: Public key cryptography: Feasible for security in modern personal area
	sensor networks?
	ABSTRACT: Public key cryptography has been considered too expensive, in
	terms of resource requirements, for applications within personal area networks
	and larger wireless sensor networks. Approaches based on public key
	cryptography for encryption/decryption and key generation respectively have
	been overlooked as the devices have been considered too low power or
	resource scarce. In recent times with the explosion of interest in the Internet of
	Things a range of new devices have been created that are low cost, powerful
	and could easily be applied within the wireless sensor network/personal area
	network domain. In this work we create a public key library suite based in
	selected approached from IEEE 1363 to test two of these new devices and

	confirm the capabilities of these new devices.
NXT50NS2	TITLE: Wireless network virtualization for enhancing security: Status,
	challenges and perspectives
	ABSTRACT: Virtualization is emerging as an efficient resource utilization
	method that eliminates dedicated physical devices. Virtualization has been
	widely used in computer systems such as virtual memory, virtual storage access
	network and wired networks - and most recently in cloud computing - to
	enhance the network performance, resource utilization and energy efficiency,
	and to achieve performance isolation between different parties. Inspired by
	this, several techniques for network and wireless virtualization have been
	proposed in the literature in order to improve the network performance and
	security. In this paper, we provide a comprehensive study of network and
	wireless virtualization for enhancing overall network security. We also outline
	current state of the research and future perspectives. With this paper, readers
	can have a more thorough understanding of wireless virtualization for network
	security and the research trends in this area.

	VANETS
NXT51NS2	TITLE: Secure and Robust Multi-Constrained QoS Aware Routing Algorithm for
	VANETs
	ABSTRACT: Secure QoS routing algorithms are a fundamental part of wireless
	networks that aim to provide services with QoS and security guarantees. In
	vehicular ad hoc networks (VANETs), vehicles perform routing functions, and at
	the same time act as end-systems thus routing control messages are
	transmitted unprotected over wireless channels. The QoS of the entire network
	could be degraded by an attack on the routing process, and manipulation of
	the routing control messages. In this paper, we propose a novel secure and
	reliable multi-constrained QoS aware routing algorithm for VANETs. We
	employ the ant colony optimisation (ACO) technique to compute feasible
	routes in VANETs subject to multiple QoS constraints determined by the data
	traffic type. Moreover, we extend the VANET-oriented evolving graph (VoEG)
	model to perform plausibility checks on the routing control messages
	exchanged among vehicles. Simulation results show that the QoS can be
	guaranteed while applying security mechanisms to ensure a reliable and robust
	routing service.
NXT52NS2	TITLE: A Graph Coloring Resource Sharing Scheme for Full-Duplex Cellular-
	VANET Heterogeneous Networks
	ABSTRACT: Recently, the vehicular ad hoc networks (VANETs) and full-duplex
	(FD) cellular networks have both attracted much research interest. Considering
	the trend of integrated networks in the future, in this paper, we focus on the
	FD cellular-VANET heterogeneous networks, where cellular uplinks, downlinks,
	and vehicle-to-vehicle (V2V) communication links co-exist and are permitted to
	reuse the same spectrum resources. This also leads to a more complicated
	interference scenario. In such a scenario, we for the first time study the joint
	resource blocks assignment and transmit power allocation problem.

graph coloring based resource sharing scheme to solve the problem, in order to achieve a relatively good trade-off between the network throughput and the computational complexity. The simulation results demonstrate the efficiency of our proposed algorithm.NXT53N52TITLE: A Cluster Based Multicast Routing Protocol for Autonomous Unmanned Military Vehicles (AUMVs) Communication in VANET ABSTRACT: Autonomous Unmanned Military Vehicles (AUMVs) became part of numerous military combat operations to meet the challenges of modern warfare techniques and strategies. Hence, there is a need to develop an ad hoc network among AUMVs to perform the military tasks collectively within a war field where infrastructure installation is not possible. Therefore, in this paper a novel AUMVs protocol is proposed to develop a Vehicular Ad Hoc Network (VANET) among unmanned Military Vehicles (MVs). The proposed protocol performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETs ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the <th></th> <th>Specifically, we construct a graph to model the system, and further propose a</th>		Specifically, we construct a graph to model the system, and further propose a
achieve a relatively good trade-off between the network throughput and the computational complexity. The simulation results demonstrate the efficiency of our proposed algorithm.NXT53NS2TITLE: A Cluster Based Multicast Routing Protocol for Autonomous Unmanned Military Vehicles (AUMVs) Communication in VANET ABSTRACT: Autonomous Unmanned Military Vehicles (AUMVs) became part of numerous military combat operations to meet the challenges of modern warfare techniques and strategies. Hence, there is a need to develop an ad hoc network among AUMVs to perform the military tasks collectively within a war field where infrastructure installation is not possible. Therefore, in this paper a novel AUMVs protocol is proposed to develop a Vehicular Ad Hoc Network (VANET) among unmanned Military Vehicles (MVs). The proposed protocol performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETs ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		graph coloring based resource sharing scheme to solve the problem, in order to
NXT53NS2TITLE: A Cluster Based Multicast Routing Protocol for Autonomous Unmanned Military Vehicles (AUMVs) Communication in VANET ABSTRACT: Autonomous Unmanned Military Vehicles (AUMVs) became part of numerous military combat operations to meet the challenges of modern warfare techniques and strategies. Hence, there is a need to develop an ad hoc network among AUMVs to perform the military tasks collectively within a war field where infrastructure installation is not possible. Therefore, in this paper a novel AUMVs protocol is proposed to develop a Vehicular Ad Hoc Network (VANET) among unmanned Military Vehicles (MVs). The proposed protocol performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETS ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		achieve a relatively good trade-off between the network throughput and the
NXT53NS2TITLE: A Cluster Based Multicast Routing Protocol for Autonomous Unmanned Military Vehicles (AUMVs) Communication in VANET ABSTRACT: Autonomous Unmanned Military Vehicles (AUMVs) became part of numerous military combat operations to meet the challenges of modern warfare techniques and strategies. Hence, there is a need to develop an ad hoc network among AUMVs to perform the military tasks collectively within a war field where infrastructure installation is not possible. Therefore, in this paper a novel AUMVs protocol is proposed to develop a Vehicular Ad Hoc Network (VANET) among unmanned Military Vehicles (MVs). The proposed protocol performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETS ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		computational complexity. The simulation results demonstrate the efficiency of
NXT53NS2TITLE: A Cluster Based Multicast Routing Protocol for Autonomous Unmanned Military Vehicles (AUMVs) Communication in VANET ABSTRACT: Autonomous Unmanned Military Vehicles (AUMVs) became part of numerous military combat operations to meet the challenges of modern warfare techniques and strategies. Hence, there is a need to develop an ad hoc network among AUMVs to perform the military tasks collectively within a war field where infrastructure installation is not possible. Therefore, in this paper a novel AUMVs protocol is proposed to develop a Vehicular Ad Hoc Network (VANET) among unmanned Military Vehicles (MVs). The proposed protocol performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETs ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		our proposed algorithm.
Unmanned Military Vehicles (AUMVs) Communication in VANETABSTRACT: Autonomous Unmanned Military Vehicles (AUMVs) became part of numerous military combat operations to meet the challenges of modern warfare techniques and strategies. Hence, there is a need to develop an ad hoc network among AUMVs to perform the military tasks collectively within a war field where infrastructure installation is not possible. Therefore, in this paper a novel AUMVs protocol is proposed to develop a Vehicular Ad Hoc Network (VANET) among unmanned Military Vehicles (MVs). The proposed protocol performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETS ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the	NXT53NS2	TITLE: A Cluster Based Multicast Routing Protocol for Autonomous
ABSTRACT: Autonomous Unmanned Military Vehicles (AUMVs) became part of numerous military combat operations to meet the challenges of modern warfare techniques and strategies. Hence, there is a need to develop an ad hoc network among AUMVs to perform the military tasks collectively within a war field where infrastructure installation is not possible. Therefore, in this paper a novel AUMVs protocol is proposed to develop a Vehicular Ad Hoc Network (VANET) among unmanned Military Vehicles (MVs). The proposed protocol performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETS ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		Unmanned Military Vehicles (AUMVs) Communication in VANET
numerous military combat operations to meet the challenges of modern warfare techniques and strategies. Hence, there is a need to develop an ad hoc network among AUMVs to perform the military tasks collectively within a war field where infrastructure installation is not possible. Therefore, in this paper a novel AUMVs protocol is proposed to develop a Vehicular Ad Hoc Network (VANET) among unmanned Military Vehicles (MVs). The proposed protocol performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETS ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		ABSTRACT: Autonomous Unmanned Military Vehicles (AUMVs) became part of
warfare techniques and strategies. Hence, there is a need to develop an ad hoc network among AUMVs to perform the military tasks collectively within a war field where infrastructure installation is not possible. Therefore, in this paper a novel AUMVs protocol is proposed to develop a Vehicular Ad Hoc Network (VANET) among unmanned Military Vehicles (MVs). The proposed protocol performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETS ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		numerous military combat operations to meet the challenges of modern
NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETSNXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link core the proposed protocol based protocol based protocol activity and uneven distribution of vehicles and becomes activity of vehicles that the proposed Protocol activity of vehicles that the protocol activity and uneven distribution of vehicles and efficient communication among unmanned MUS.		warfare techniques and strategies. Hence, there is a need to develop an ad hoc
field where infrastructure installation is not possible. Therefore, in this paper a novel AUMVs protocol is proposed to develop a Vehicular Ad Hoc Network (VANET) among unmanned Military Vehicles (MVs). The proposed protocol performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETS ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		network among AUMVs to perform the military tasks collectively within a war
NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETSNXT54NS2TITLE: A Street-Centric opportunistic Routing Protocol Based on Link correlation of vehicles dhow to determine a street selection at the proposed protocol has an intra-street and how to determine a street selection at the		field where infrastructure installation is not possible. Therefore, in this paper a
(VANET) among unmanned Military Vehicles (MVs). The proposed protocol performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETSABSTRACT:In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		novel AUMVs protocol is proposed to develop a Vehicular Ad Hoc Network
performs cluster based multicast communication among AUMVs by considering real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETsABSTRACT:In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		(VANET) among unmanned Military Vehicles (MVs). The proposed protocol
real time and dynamic war field scenario. The AUMVs protocol develops stable clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETsABSTRACT:In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		performs cluster based multicast communication among AUMVs by considering
 clusters and becomes adaptable according to the military environment by using a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs. NXT54NS2 TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETs ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the 		real time and dynamic war field scenario. The AUMVs protocol develops stable
 a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs. NXT54NS2 TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETs ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the 		clusters and becomes adaptable according to the military environment by using
formation which reduces the network overhead and delay. Additionally, the AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETsABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		a proposed Priority Based Cluster Head Election Scheme (PCHE) during cluster
AUMVs protocol achieves high throughput by combining the multicast approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link 		formation which reduces the network overhead and delay. Additionally, the
approach with a cluster based scheme. The simulation results illustrate that the proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETsABSTRACT:In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		AUMVs protocol achieves high throughput by combining the multicast
proposed protocol has achieved the goal of stable and efficient communication among unmanned MVs.NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETsABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		approach with a cluster based scheme. The simulation results illustrate that the
among unmanned MVs. NXT54NS2 TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETs ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		proposed protocol has achieved the goal of stable and efficient communication
NXT54NS2TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link Correlation for Urban VANETsABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		among unmanned MVs.
Correlation for Urban VANETs ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the	NXT54NS2	TITLE: A Street-Centric Opportunistic Routing Protocol Based on Link
ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		Correlation for Urban VANETs
mobility and uneven distribution of vehicles, how to select an optimal relaying node in an intra-street and how to determine a street selection at the		ABSTRACT: In urban vehicular ad hoc networks (VANETs), due to the high
node in an intra-street and how to determine a street selection at the		mobility and uneven distribution of vehicles, how to select an optimal relaying
		node in an intra-street and how to determine a street selection at the

	intersection are two challenging issues in designing an efficient routing
	protocol in complex urban environments. In this paper, we build a link model
	with a Wiener process to predict the probability of link availability, which
	considers the stable and unstable vehicle states according to the behavior of
	vehicles. We introduce a novel concept called the link correlation which
	represents the influence of different link combinations in network topology to
	transmit a packet with less network resource consumption and higher goodput.
	Based on this concept, we design an opportunistic routing metric called the
	expected transmission cost over a multi-hop path (ETCoP) implemented with
	our link model as the selection guidance of a relaying node in intra-streets. This
	metric can also provide assistance for the next street selection at an
	intersection. Finally, we propose a street-centric opportunistic routing protocol
	based on ETCoP for VANETs (SRPE). Simulation results show that our proposed
	SRPE outperforms the conventional protocols in terms of packet delivery ratio,
	average end-to-end delay, and network yield.
NXT55NS2	average end-to-end delay, and network yield. TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with
NXT55NS2	average end-to-end delay, and network yield. TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with Handoff in VANET
NXT55NS2	average end-to-end delay, and network yield. TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with Handoff in VANET ABSTRACT: Vehicular Ad Hoc network (VANET), is a hot topic that applying
NXT55NS2	average end-to-end delay, and network yield. TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with Handoff in VANET ABSTRACT: Vehicular Ad Hoc network (VANET), is a hot topic that applying mobile Ad Hoc network (MANET) to ITS in recent years. Special environments
NXT55NS2	average end-to-end delay, and network yield. TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with Handoff in VANET ABSTRACT: Vehicular Ad Hoc network (VANET), is a hot topic that applying mobile Ad Hoc network (MANET) to ITS in recent years. Special environments and applications cause difficulties to the design of the routing protocols
NXT55NS2	average end-to-end delay, and network yield.TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with Handoff in VANETABSTRACT: Vehicular Ad Hoc network (VANET), is a hot topic that applying mobile Ad Hoc network (MANET) to ITS in recent years. Special environments and applications cause difficulties to the design of the routing protocols of VANET which can not use the exiting protocols well. Firstly, this paper
NXT55NS2	average end-to-end delay, and network yield.TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with Handoff in VANETABSTRACT: Vehicular Ad Hoc network (VANET), is a hot topic that applying mobile Ad Hoc network (MANET) to ITS in recent years. Special environments and applications cause difficulties to the design of the routing protocols of VANET which can not use the exiting protocols well. Firstly, this paper introduces some concepts of VANET briefly, analyzes and compares some
NXT55NS2	average end-to-end delay, and network yield.TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with Handoff in VANETABSTRACT: Vehicular Ad Hoc network (VANET), is a hot topic that applying mobile Ad Hoc network (MANET) to ITS in recent years. Special environments and applications cause difficulties to the design of the routing protocols of VANET which can not use the exiting protocols well. Firstly, this paper introduces some concepts of VANET briefly, analyzes and compares some different kinds of existing routing protocols inVANET. Then, basing on the
NXT55NS2	average end-to-end delay, and network yield.TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with Handoff in VANETABSTRACT: Vehicular Ad Hoc network (VANET), is a hot topic that applying mobile Ad Hoc network (MANET) to ITS in recent years. Special environments and applications cause difficulties to the design of the routing protocols of VANET which can not use the exiting protocols well. Firstly, this paper introduces some concepts of VANET briefly, analyzes and compares some different kinds of existing routing protocols inVANET. Then, basing on the characteristics of the VANET, and utilizing the idea of cluster and handoff, a
NXT55NS2	 average end-to-end delay, and network yield. TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with Handoff in VANET ABSTRACT: Vehicular Ad Hoc network (VANET), is a hot topic that applying mobile Ad Hoc network (MANET) to ITS in recent years. Special environments and applications cause difficulties to the design of the routing protocols of VANET which can not use the exiting protocols well. Firstly, this paper introduces some concepts of VANET briefly, analyzes and compares some different kinds of existing routing protocols inVANET. Then, basing on the characteristics of the VANET, and utilizing the idea of cluster and handoff, a more efficient protocol is developed in this paper, which is dubbed Traffic
NXT55NS2	average end-to-end delay, and network yield. TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with Handoff in VANET ABSTRACT: Vehicular Ad Hoc network (VANET), is a hot topic that applying mobile Ad Hoc network (MANET) to ITS in recent years. Special environments and applications cause difficulties to the design of the routing protocols of VANET which can not use the exiting protocols well. Firstly, this paper introduces some concepts of VANET briefly, analyzes and compares some different kinds of existing routing protocols inVANET. Then, basing on the characteristics of the VANET, and utilizing the idea of cluster and handoff, a more efficient protocol is developed in this paper, which is dubbed Traffic Infrastructure Based Cluster Routing Protocol with Handoff (TIBCRPH). Finally,
NXT55NS2	average end-to-end delay, and network yield. TITLE: TIBCRPH: Traffic Infrastructure Based Cluster Routing Protocol with Handoff in VANET ABSTRACT: Vehicular Ad Hoc network (VANET), is a hot topic that applying mobile Ad Hoc network (MANET) to ITS in recent years. Special environments and applications cause difficulties to the design of the routing protocols of VANET which can not use the exiting protocols well. Firstly, this paper introduces some concepts of VANET briefly, analyzes and compares some different kinds of existing routing protocols inVANET. Then, basing on the characteristics of the VANET, and utilizing the idea of cluster and handoff, a more efficient protocol is developed in this paper, which is dubbed Traffic Infrastructure Based Cluster Routing Protocol with Handoff (TIBCRPH). Finally, TIBCRPH is compared with other six typical routing protocols on node density

	than some traditional routing protocols.
NXT56NS2	TITLE: A two level privacy preserving pseudonymous authentication protocol
	for VANET
	ABSTRACT: Vehicular ad hoc network (VANET) is gaining significant popularity
	due to their role in improving traffic efficiency and safety. However,
	communication in VANET needs to be secure as well as authenticated. The
	vehicles in the VANET not only broadcast traffic messages known as beacons
	but also broadcast safety critical messages such as electronic emergency brake
	light (EEBL). Due to the openness of the network, a malicious vehicles can join
	the network and broadcast bogus messages that could result in accident. On
	one hand, a vehicle needs to be authenticated while on the other hand, its
	private data such as location and identity information must be prevented from
	misuse. In this paper, we propose an efficient pseudonymous authentication
	protocol with conditional privacy preservation to enhance the security
	of VANET. Most of the current protocols either utilize pseudonym based
	approaches with certificate revocation list (CRL) that causes significant
	communicational and storage overhead or group signature based approaches
	that are computationally expensive. Another inherent disadvantage is to have
	full trust on certification authorities, as these entities have complete user
	profiles. We present a new protocol that only requires honest-but-curious
	behavior from certification authority. We utilize a mechanism for providing a
	user with two levels of pseudonyms named as base pseudonym and short time
	pseudonyms to achieve conditional privacy. However, in case of revocation,
	there is no need to maintain the revocation list of pseudonyms. The inherent
	mechanism assures the receiver of the message about the authenticity of the
	pseudonym. In the end of the paper, we analyze our protocol by giving the
	communication cost as well as various attack scenarios to show that our
	approach is efficient and robust.

NXT57NS2	TITLE: P2P Computing in Design of VANET Routing Protocol
	ABSTRACT: The study of peer-to-peer network and vehicle ad hoc network
	(VANET) are currently two hotspots in distributed computing and mobile
	communication researching domain. By building up a P2P overlay network on
	top of VANET's physical infrastructure, we effectively integrated P2P network's
	advantage on sustaining highly dynamic network into the design
	of VANET routing protocol. By deploying passiveVANET routing algorithms with
	innovative P2P routing mechanisms, we propose a new kind of VANETrouting
	protocol named Peer Computing based Ad hoc On Demand Vector (PAV). A
	detailed description of the P2P decentralized naming, route discovering, route
	querying and updating algorithm used in PAV is presented in this paper. The
	simulation results indicate that PAV has an improved routing performance in
	comparison with the popularly used AODV protocol.
NXT58NS2	TITLE: Scalable VANET content routing using hierarchical bloom filters
	ABSTRACT: In this paper, we discuss scalable content-oriented routing that
	ABSTRACT: In this paper, we discuss scalable content-oriented routing that enables storing, sharing and searching data totally within the VANET. We
	ABSTRACT: In this paper, we discuss scalable content-oriented routing that enables storing, sharing and searching data totally within the VANET. We introduce a proactive content discovery scheme, Hierarchical Bloom-Filter
	ABSTRACT: In this paper, we discuss scalable content-oriented routing that enables storing, sharing and searching data totally within the VANET. We introduce a proactive content discovery scheme, Hierarchical Bloom-Filter Routing (HBFR), to tackle mobility, large population and rich content challenges
	ABSTRACT: In this paper, we discuss scalable content-oriented routing that enables storing, sharing and searching data totally within the VANET. We introduce a proactive content discovery scheme, Hierarchical Bloom-Filter Routing (HBFR), to tackle mobility, large population and rich content challenges of VANETs. HBFR is compared to the popular ICN reactive content discovery
	ABSTRACT: In this paper, we discuss scalable content-oriented routing that enables storing, sharing and searching data totally within the VANET. We introduce a proactive content discovery scheme, Hierarchical Bloom-Filter Routing (HBFR), to tackle mobility, large population and rich content challenges of VANETs. HBFR is compared to the popular ICN reactive content discovery scheme in practical VANETscenarios. The results show that HBFR suits non-
	ABSTRACT: In this paper, we discuss scalable content-oriented routing that enables storing, sharing and searching data totally within the VANET. We introduce a proactive content discovery scheme, Hierarchical Bloom-Filter Routing (HBFR), to tackle mobility, large population and rich content challenges of VANETs. HBFR is compared to the popular ICN reactive content discovery scheme in practical VANETscenarios. The results show that HBFR suits non- sharable data services, while reactive ICN inspired content discovery works well
	ABSTRACT: In this paper, we discuss scalable content-oriented routing that enables storing, sharing and searching data totally within the VANET. We introduce a proactive content discovery scheme, Hierarchical Bloom-Filter Routing (HBFR), to tackle mobility, large population and rich content challenges of VANETs. HBFR is compared to the popular ICN reactive content discovery scheme in practical VANETscenarios. The results show that HBFR suits non- sharable data services, while reactive ICN inspired content discovery works well with popular sharable data. We suggest a hybrid approach that adaptively
	ABSTRACT: In this paper, we discuss scalable content-oriented routing that enables storing, sharing and searching data totally within the VANET. We introduce a proactive content discovery scheme, Hierarchical Bloom-Filter Routing (HBFR), to tackle mobility, large population and rich content challenges of VANETs. HBFR is compared to the popular ICN reactive content discovery scheme in practical VANETscenarios. The results show that HBFR suits non- sharable data services, while reactive ICN inspired content discovery works well with popular sharable data. We suggest a hybrid approach that adaptively utilizes proactive and reactive schemes for time-sensitive data in ICN VANET.
NXT59NS2	ABSTRACT: In this paper, we discuss scalable content-oriented routing that enables storing, sharing and searching data totally within the VANET. We introduce a proactive content discovery scheme, Hierarchical Bloom-Filter Routing (HBFR), to tackle mobility, large population and rich content challenges of VANETs. HBFR is compared to the popular ICN reactive content discovery scheme in practical VANETscenarios. The results show that HBFR suits non- sharable data services, while reactive ICN inspired content discovery works well with popular sharable data. We suggest a hybrid approach that adaptively utilizes proactive and reactive schemes for time-sensitive data in ICN VANET. TITLE: Performance evaluation of reactive routing protocols in VANET
NXT59NS2	ABSTRACT: In this paper, we discuss scalable content-oriented routing that enables storing, sharing and searching data totally within the VANET. We introduce a proactive content discovery scheme, Hierarchical Bloom-Filter Routing (HBFR), to tackle mobility, large population and rich content challenges of VANETs. HBFR is compared to the popular ICN reactive content discovery scheme in practical VANETscenarios. The results show that HBFR suits non- sharable data services, while reactive ICN inspired content discovery works well with popular sharable data. We suggest a hybrid approach that adaptively utilizes proactive and reactive schemes for time-sensitive data in ICN VANET. TITLE: Performance evaluation of reactive routing protocols in VANET ABSTRACT: Node movement feature of Vehicular ad hoc network (VANET)
NXT59NS2	ABSTRACT: In this paper, we discuss scalable content-oriented routing that enables storing, sharing and searching data totally within the VANET. We introduce a proactive content discovery scheme, Hierarchical Bloom-Filter Routing (HBFR), to tackle mobility, large population and rich content challenges of VANETs. HBFR is compared to the popular ICN reactive content discovery scheme in practical VANETscenarios. The results show that HBFR suits non- sharable data services, while reactive ICN inspired content discovery works well with popular sharable data. We suggest a hybrid approach that adaptively utilizes proactive and reactive schemes for time-sensitive data in ICN VANET. TITLE: Performance evaluation of reactive routing protocols in VANET ABSTRACT: Node movement feature of Vehicular ad hoc network (VANET) closely resembles with that of mobile ad hoc network (MANET) but its high

	contrasting feature from that of MANET. The similarity nature suggests that the
	prevailing routing protocol of MANET is very much applicable to VANET.
	However, on the same line, the dissimilarity characteristics result in frequent
	loss of connectivity. This necessitates upgradation of the existing routing
	protocols to adapt itself into VANET scenario. The key parameter that needs to
	be fed into these protocols is a realistic mobility model which contains criterion
	linked to speed, road intersections, traffic light effect etc. In this paper, we
	compare performances of reactive routing protocols named Dynamic Source
	Routing (DSR), Ad hoc On Demand Distance Vector (AODV) and Ad hoc On
	Demand Multipath Distance Vector (AOMDV) in VANET using different Mobility
	Models provided in VanetMobiSim framework. The performances are
	evaluated by varying mobility, number of sources and node speed while packet
	delivery fraction, end to end delay and normalized routing load are used as
	performance metrics. The simulations have shown that AOMDV performs
	comparatively better than DSR and AODV in different mobility models in terms
	of and to and delay as performance matric
	of end to end delay as performance metric.
NXT60NS2	TITLE: VANET-Challenges in Selection of Vehicular Mobility Model
NXT60NS2	TITLE: VANET-Challenges in Selection of Vehicular Mobility Model ABSTRACT: Vehicular Adhoc Network (VANET) is wireless communication
NXT60NS2	TITLE: VANET-Challenges in Selection of Vehicular Mobility Model ABSTRACT: Vehicular Adhoc Network (VANET) is wireless communication between vehicle to vehicle and vehicle to roadside infrastructure.
NXT60NS2	TITLE: VANET-Challenges in Selection of Vehicular Mobility ModelABSTRACT: Vehicular Adhoc Network (VANET) is wireless communicationbetween vehicle to vehicle and vehicle to roadside infrastructure.The VANET has different challenges if we compare it with MANET. VANET has
NXT60NS2	TITLE: VANET-Challenges in Selection of Vehicular Mobility Model ABSTRACT: Vehicular Adhoc Network (VANET) is wireless communication between vehicle to vehicle and vehicle to roadside infrastructure. The VANET has different challenges if we compare it with MANET. VANET has traffic, safety and user application based challenges which have some specific
NXT60NS2	TITLE: VANET-Challenges in Selection of Vehicular Mobility Model ABSTRACT: Vehicular Adhoc Network (VANET) is wireless communication between vehicle to vehicle and vehicle to roadside infrastructure. The VANET has different challenges if we compare it with MANET. VANET has traffic, safety and user application based challenges which have some specific design requirements. To evaluate any VANET design, simulator with vehicular
NXT60NS2	TITLE: VANET-Challenges in Selection of Vehicular Mobility Model ABSTRACT: Vehicular Adhoc Network (VANET) is wireless communication between vehicle to vehicle and vehicle to roadside infrastructure. The VANET has different challenges if we compare it with MANET. VANET has traffic, safety and user application based challenges which have some specific design requirements. To evaluate any VANET design, simulator with vehicular mobility model is required. Vehicular mobility model play a significant role in
NXT60NS2	TITLE: VANET-Challenges in Selection of Vehicular Mobility Model ABSTRACT: Vehicular Adhoc Network (VANET) is wireless communication between vehicle to vehicle and vehicle to roadside infrastructure. The VANET has different challenges if we compare it with MANET. VANET has traffic, safety and user application based challenges which have some specific design requirements. To evaluate any VANET design, simulator with vehicular mobility model is required. Vehicular mobility model play a significant role in evaluating different challenges. It is found that different models are for
NXT60NS2	TITLE: VANET-Challenges in Selection of Vehicular Mobility Model ABSTRACT: Vehicular Adhoc Network (VANET) is wireless communication between vehicle to vehicle and vehicle to roadside infrastructure. The VANET has different challenges if we compare it with MANET. VANET has traffic, safety and user application based challenges which have some specific design requirements. To evaluate any VANET design, simulator with vehicular mobility model is required. Vehicular mobility model play a significant role in evaluating different challenges. It is found that different models are for different purposes. In fact Proper design with proper model is required for
NXT60NS2	TITLE: VANET-Challenges in Selection of Vehicular Mobility Model ABSTRACT: Vehicular Adhoc Network (VANET) is wireless communication between vehicle to vehicle and vehicle to roadside infrastructure. The VANET has different challenges if we compare it with MANET. VANEThas traffic, safety and user application based challenges which have some specific design requirements. To evaluate any VANET design, simulator with vehicular mobility model is required. Vehicular mobility model play a significant role in evaluating different challenges. It is found that different models are for different purposes. In fact Proper design with proper model is required for getting better results. A classification is made between different Vehicular
NXT60NS2	TITLE: VANET-Challenges in Selection of Vehicular Mobility Model ABSTRACT: Vehicular Adhoc Network (VANET) is wireless communication between vehicle to vehicle and vehicle to roadside infrastructure. The VANET has different challenges if we compare it with MANET. VANEThas traffic, safety and user application based challenges which have some specific design requirements. To evaluate any VANET design, simulator with vehicular mobility model is required. Vehicular mobility model play a significant role in evaluating different challenges. It is found that different models are for different purposes. In fact Proper design with proper model is required for getting better results. A classification is made between different Vehicular mobility model on the basis of type, sub type, interaction level, and evaluation

www.nxtlogic.com | www.nxtproject.com

NXT61NS2 TITLE: MAZACORNET: Mobility aware zone based ant colony optimization routing for VANET

ABSTRACT: Vehicular Ad hoc Networks (VANET) exhibit highly dynamic behavior with high mobility and random network topologies. The performance of Transmission Control Protocols (TCP) in such wireless ad hoc networks is plagued by a number of problems: frequent link failures, scalability, multi-hop data transmission and data loss. In this work, we make use of the vehicle's movement pattern, vehicle density, vehicle velocity and vehicle fading conditions to develop a hybrid, multi-path ant colony based routing algorithm, Mobility Colony Aware Zone based Ant Optimization Routing for VANET(MAZACORNET). that exhibits locality and scalability. We use ACO to find multiple routes between nodes in the network to aid in link failures. To achieve scalability we partition the network into multiple zones. We use proactive approach to find a route within a zone and reactive approach to find routes between zones using the local information stored in each zone thereby trying to reduce broadcasting and congestion. Our proposed algorithm makes effective use of the network bandwidth, is scalable and is robust to link failures. The results show that the algorithm works well for dense networks. The algorithm produces better delivery ratio and is scalable for zones beyond four. When compared to other existing VANET algorithms, the hybrid algorithm proved to be more efficient in terms of packet delivery ratio and end to end delay. To our knowledge this is the first ant based routing algorithm for VANET that uses the concept of zones. **NXT62NS2** TITLE: AODV routing protocol modification with dqueue(dqAODV) for VANET in city scenarios

ABSTRACT: Vehicular ad hoc network (VANET) is considered as a sub-set of mobile ad hoc network (MANET). It provides smart Transport System i.e., wireless ad-hoc communication in between vehicles and vehicle to roadside

	equipments. Based on this technology road network is classified into two types
	1. vehicle to vehicle interaction, 2. vehicle to infrastructure interaction. The
	objective of VANET is to provide safe, secure and automated traffic system. For
	this automated traffic technique several types of routing protocols have been
	developed. But routing protocols of MANET are not directly applicable
	to VANET. In this study, we proposed a modified AODV routing protocol in the
	context of VANET with the help of dqueue introduction into the RREQ header
	in the C++ code of built-in AODV protocol in NCTUns-6.0 simulator. Recently
	Saha et al [1] has reported the results showing the nature of modified AODV
	obtained from the rudimentary version of their simulation code. It is mainly
	based on packed delivery throughput. It shows greater In-throughput
	information of packet transmission compare to original AODV. It has been
	observed from the study that our protocols needs less overhead and yield
	greater performance in compared to conventional AODV.
NXT63NS2	TITLE: CBOoS-Vanet: Cluster-based artificial bee colony algorithm for OoS
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET ABSTRACT: Recent years have seen a growing interest in Vehicular Ad hoc
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET ABSTRACT: Recent years have seen a growing interest in Vehicular Ad hoc Networks (VANETs) and their benefits to the development of intelligent
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET ABSTRACT: Recent years have seen a growing interest in Vehicular Ad hoc Networks (VANETs) and their benefits to the development of intelligent transportation systems (ITS). With the deployment of multimedia services over
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET ABSTRACT: Recent years have seen a growing interest in Vehicular Ad hoc Networks (VANETs) and their benefits to the development of intelligent transportation systems (ITS). With the deployment of multimedia services over VANETs, there is a need to develop new approaches to insure higher level of
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET ABSTRACT: Recent years have seen a growing interest in Vehicular Ad hoc Networks (VANETs) and their benefits to the development of intelligent transportation systems (ITS). With the deployment of multimedia services over VANETs, there is a need to develop new approaches to insure higher level of quality of services (QoS) for real time applications, and integrate QoS into
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET ABSTRACT: Recent years have seen a growing interest in Vehicular Ad hoc Networks (VANETs) and their benefits to the development of intelligent transportation systems (ITS). With the deployment of multimedia services over VANETs, there is a need to develop new approaches to insure higher level of quality of services (QoS) for real time applications, and integrate QoS into routing protocols. However, in VANETenvironment, it is not an easy task to
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET ABSTRACT: Recent years have seen a growing interest in Vehicular Ad hoc Networks (VANETs) and their benefits to the development of intelligent transportation systems (ITS). With the deployment of multimedia services over VANETs, there is a need to develop new approaches to insure higher level of quality of services (QoS) for real time applications, and integrate QoS into routing protocols. However, in VANETenvironment, it is not an easy task to search for routes which satisfy the QoS required by the applications. In this
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET ABSTRACT: Recent years have seen a growing interest in Vehicular Ad hoc Networks (VANETs) and their benefits to the development of intelligent transportation systems (ITS). With the deployment of multimedia services over VANETs, there is a need to develop new approaches to insure higher level of quality of services (QoS) for real time applications, and integrate QoS into routing protocols. However, in VANETenvironment, it is not an easy task to search for routes which satisfy the QoS required by the applications. In this paper, we propose CBQoS-Vanet, a new QoS-based unicast routing protocol for
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET ABSTRACT: Recent years have seen a growing interest in Vehicular Ad hoc Networks (VANETs) and their benefits to the development of intelligent transportation systems (ITS). With the deployment of multimedia services over VANETs, there is a need to develop new approaches to insure higher level of quality of services (QoS) for real time applications, and integrate QoS into routing protocols. However, in VANETenvironment, it is not an easy task to search for routes which satisfy the QoS required by the applications. In this paper, we propose CBQoS-Vanet, a new QoS-based unicast routing protocol for vehicular networks. This protocol is based on the use of two techniques: a
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET ABSTRACT: Recent years have seen a growing interest in Vehicular Ad hoc Networks (VANETs) and their benefits to the development of intelligent transportation systems (ITS). With the deployment of multimedia services over VANETs, there is a need to develop new approaches to insure higher level of quality of services (QoS) for real time applications, and integrate QoS into routing protocols. However, in VANETenvironment, it is not an easy task to search for routes which satisfy the QoS required by the applications. In this paper, we propose CBQoS-Vanet, a new QoS-based unicast routing protocol for vehicular networks. This protocol is based on the use of two techniques: a clustering algorithm which organizes and optimizes the exchange of the routing
NXT63NS2	TITLE: CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET ABSTRACT: Recent years have seen a growing interest in Vehicular Ad hoc Networks (VANETs) and their benefits to the development of intelligent transportation systems (ITS). With the deployment of multimedia services over VANETs, there is a need to develop new approaches to insure higher level of quality of services (QoS) for real time applications, and integrate QoS into routing protocols. However, in VANETenvironment, it is not an easy task to search for routes which satisfy the QoS required by the applications. In this paper, we propose CBQoS-Vanet, a new QoS-based unicast routing protocol for vehicular networks. This protocol is based on the use of two techniques: a clustering algorithm which organizes and optimizes the exchange of the routing information based on QoS requirements, and an artificial bee colony algorithm,

criteria. In our approach clusters are formed around cluster-heads that are elected based on QoS consideration. In this paper we consider the following QoS criteria: available bandwidth, end-to-end delay, jitter, and link expiration time. Through simulation experiments, we show that our method can improve greatly the performance of routing in VANET by selecting routes based on the above mentioned QoS criteria.

NXT64NS2 TITLE: A VANET routing based on the real-time road vehicle density in the city environment

ABSTRACT: The intelligent transportation system (ITS) can enhance the driver's safety by providing safety-related information such as traffic conditions and accident information to drivers. The vehicular ad hoc network (VANET) is an essential technology for the deployment of ITS. And, for the reliable delivery of safety-related information to vehicles in the VANET, a reliable VANET routing protocol is required. VANETrouting is challenging since it is fundamentally different from conventional ad hoc networks; the vehicles move fast, and the network topology changes rapidly causing intermittent link connectivity. In this paper, we propose a routing protocol that works based on the real-time road vehicle density in order to provide fast and reliable communications so that it adapts to the dynamic vehicular city environment. In the proposed routing mechanism, each vehicle computes the vehicle density of the road to which it belongs by using beacon messages and the road information table. Based on the real-time road vehicle density information, each vehicle establishes a reliable route for packet delivery. In order to evaluate the performance of the proposed mechanism, we compare our proposed mechanism with GPSR through NS-2 based simulations and show that our mechanism outperforms GPSR in terms of delivery success rate and routing overhead.

NXT65NS2	TITLE: Design and Implementation of the Travelling Time- and Energy-
	Efficient Android GPS Navigation App with the VANET-Based A* Route
	Planning Algorithm
	ABSTRACT: This paper has three major contributions. First, a vehicular ad-hoc
	network (VANET)-based A* (VBA*) route planning algorithm is proposed to
	calculate the route with the shortest travelling time or the least oil
	consumption, depending on two real-time traffic information sources. The first
	one is the recorded traffic information of the road segment that the vehicle has
	passed through. This traffic information is further exchanged between vehicles
	when they enter the transmission range of IEEE 802.11p wireless link in
	the VANET. The second one is the traffic information provided by Google Maps.
	Then, a GPS navigation app is implemented on the Android platform to realize
	the VBA* route planning algorithm. Finally, simulations for six route planning
	algorithms are executed by the well-known VANET simulator, i.e., The ONE. In
	summary, VBA* achieves significant reductions on both the average travelling
	time and oil consumption of the planned route, as compared to traditional
	route planning algorithms.
NXT66NS2	TITLE: A 3D Web-based visualization tool for VANET simulations
	ABSTRACT: VANET Simulation schemes require a combination of mobility and
	wireless network simulation packages, coupled with custom scripts,
	visualization tools and various scenarios. The results of simulation studies need
	to be supported by special tools or scripts to analyze or visualize them easily.
	Some additional difficulties arise at sharing the results, visually comparing
	simulation runs across different platforms and showcasing the findings of a
	research to a larger audience. As a solution, we have developed a 3D Web-
	based Visualization Tool for VANET Simulations (WGL-VANET), which takes
	advantage of HTML5 and WebGL technologies to create a cross-platform, easy-
	to-use and flexible visualization tool for VANET simulations. WGL-VANET reads

	simulation data from a JSON document and supports a variety of visual
	features, and displays the simulation run on a WebGL canvas inside a web-
	browser.
NXT67NS2	TITLE: Scenario Based Performance Analysis of AODV and GPSR Routing
	Protocols in a VANET
	ABSTRACT: Vehicular Ad Hoc Network (VANET) is formed by a number of
	moving vehicles that are equipped with wireless interfaces. It is a kind of
	Mobile Ad Hoc Network (MANET) in which communication takes place
	between moving vehicles on the road. VANETs are heterogeneous in nature as
	they provide wireless communication among moving vehicles (V2V) and vehicle
	to Road Side Units (RSU). It has become an exciting area of research as it is
	anticipated to improve Intelligent Transport System (ITS). To exploit effective
	communication among vehicles, routing is the key factor which needs to be
	investigated. This paper intends to analyze the performance of AODV and GPSR
	routing protocols in aVANET in various scenarios under different traffic
	conditions with respect to Packet Delivery Ratio (PDR) and average End-to-End
	Delay (E2ED). Simulation is performed using NS-2.35 in combination
	with Vanet MobiSim. It has been found that AODV performs better with
	respect to PDR and GPSR outperforms AODV with respect to E2ED. Also, the
	performance of both the routing protocols varies from one scenario to another
	and traffic types. The performance of both AODV and GPSR is improved by
	using IEEE 802.11p instead of IEEE 802.11.
NXT68NS2	TITLE: Extended mobility management and routing protocols for internet-to-
	VANET multicasting
	ADCTRACT. Francisco ITC conditations such as flast menorement and asist of
	ABSIRACI: Emerging IIS applications such as fleet management and point of
	interest distribution require vehicles to have Internet access. However,
	allowing vehicles to access to the Internet is particularly challenging due to the

ling
oup
-to-
ent
per
ent
-to-
cast
dth
ded
col.
the
nes
nes
nes
nes
ous
ous an
ous an ical
ous an ical the
ous an ical the s to
ous an ical the to ion
ous an ical the s to :ion 2 of sing
ous an ical the s to :ion e of king nto
ous an ical the s to :ion 2 of cing nto ical
ous an ical the s to cion e of cing nto ical

NXT70NS2	TITLE: Secure architecture dedicated for VANET alarm messages
	authentication through semantic verification
	ABSTRACT: Vehicle communications are becoming increasingly popular
	propelled by payigation safety requirements and by the investments of car
	manufacturers and Dublic Transport Authorities. Efforts and research have
	manufacturers and Public transport Authonties. Enorts and research have
	been performed to secure VANET communications. However, most of the
	solutions are based on cryptographic computation which is considerably slower
	and consumes extra energy and may also not satisfy the real-time requirement,
	without introducing trust in VANET. This gives rise to the need for new
	solutions aiming at network protection. This article presents a new architecture
	based on the verification of the alert message content and its semantics by
	deploying a new reputation system. For this aim, we included a new scheme of
	valorizing trust for each vehicle into the cryptographic algorithm based on PKI
	method. A part of simulation was done with the AVISPA web tool.
NXT71NS2	TITLE: Acoustic noise pollution monitoring in an urban environment using a
	VANET network
	ABSTRACT: The main objective of this work is the development of a Vehicle Ad
	Hoc NETwork (VANET) to collect data from GPS equipped mobile phones used
	as noise detectors. In this system, sensor nodes perioadically transmit acoustic
	noise levels to neighboring cars, data packets being shared and temporary
	stored by participating VANET nodes and ultimately forwarded to a collector
	node connected to the Internet, providing public real-time data. A routing
	technique called MD OLSP that takes into account the spatially constant
	Lectinique caned MP-OLSK that takes into account the spatially separation
	between the multiple paths is used, for better transmission reliability and
	congestion avoidance as well as for control message overhead minimization.
1	

NXT72NS2	TITLE: VANET Security Framework for Trusted Grouping Using TPM Hardware
	ABSTRACT: Vehicular Ad hoc Network (VANET) is a network of vehicles on the
	roads, of which the success of its applications is highly dependent upon the
	underlying security mechanism. The default trial asymmetric PKI/ECDSA
	security mechanism is known for its high computational cost, thus lacking
	applicability in life-critical safety messaging. Alternative security schemes, such
	as symmetric methods provide faster communication at the expense of
	reduced security. Hence, hybrid and hardware based solutions were proposed
	by researchers to ease the issue. However, these solutions either do not
	support the existing/ANET PKI standard or have larger message size. In this
	namer we present a hardware based security framework that uses both
	standard asymmetric PKI and symmetric cryptography for faster and secure
	safety message exchange. The proposed framework is expected to improve
	salety message exchange. The proposed framework is expected to improve
	security mechanism in VANET by developing trust relationship among the
	neignboring nodes, nence forming trusted groups. The trust is established via
	Trusted Platform Module (TPM) and group communication.
NXT73NS2	TITLE: NetLogo Based Model for VANET Behaviors Dynamic Research
	ABSTRACT : The meanings and contents of the vehicular networks simulation
	research are addressed. By the discussion of self-organization characteristics
	and the interaction between a large numbers of self-organizing vehicles a new
	vehicle mobility model based on the true scene of the participants is proposed
	that is RAOC modeling method. It aims to obtain a more profound
	comprehension of the complex hebryior working mechanism of the vehicle in
	the VANET equirement and be able to faithfully reproduce the
	real VANET coope. The emergent behavior and sudder suisting baby in
	real VANET scene. The emergent behavior and sudden existing behaviors
	of VAINETentities are well reflected and this helps for safety driving and
	warning timely.

NXT74NS2	TITLE: Improvizmg the public key infrastructure to build trust architecture for
	VANET by using short-time certificate management and Merkle Signature
	Scheme
	ABSTRACT: Applications in Vehicular Adhoc NETwork (VANET) require high
	security for end to end communication especially for sensitive information. It is
	necessary to restrict the unauthorized users from accessing the VANET services
	using a trusted infrastructure. In addition, messages exchanged should have
	minimum authentication delay and communication overhead. In this paper, a
	novel architecture is proposed for trusted infrastructure using combination of
	short time certificate and Merkle Signature Scheme. In this architecture,
	secure VANET communication is achieved using psuedo ID generated by the
	vehicle and the issue of short certificate by the trusted infrastructure that
	grants the private public key pairs according to the priority of the messages
	exchanged. Therefore the message dissemination offers reduced overhead and
	meets the requirement of VANET communication.
NXT75NS2	TITLE: Efficient VANET Unicast Routing Using Historical and Real-Time Traffic
	Information
	ABSTRACT . In this paper, we propose an intersection graph-based vehicular ad
	hoc network (VANET) architecture. Using the available electronic MAP and
	historical traffic statistics from public traffic databases we create an
	intersection graph (IG) consisting of all connected road cogmonts, which have
	shorter everage inter vehicle distances than the wireless transmission range as
	shorter average inter-vehicle distances than the wireless transmission range, as
	Its edges and intersections of these road segments as its vertices. We then
	calculate the least cost routing path in the IG. Hence, the source vehicle
	leverages the proposed IG and IG bypass routing protocols to greedily forward
	unicast packets to the destination vehicle via each intermediate intersection on
	the least cost IG path. Further, we also propose the IG routing path recovery
	process to handle the broken IG path in real-time. Finally, we execute NS2

www.nxtlogic.com | www.nxtproject.com

simulations to exhibit that the IG and IG bypass routing protocols significantly outperform four well-known VANET ones in terms of the average packet delivery ratio, end-to-end delay and hop count.

TRAINING AND SERVICES

- Training By Corporate Trainers
- Research Environment
- Coding Explanation
- Will Provide Full Source Code Of The Project
- Full Documentation And Diagrams (Min 80 Pages)
- Some Of Q&A Based On Final Viva
- Journal Publications / Conference Publications
- Study Materials & Certification
- Printing & Binding.
- Aptitude and Soft Skill Training.
- 100% Placement Assistance.
- Full Time/Part Time Job Assistance During Your Project
- Own Project Idea Also Welcome